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ORGANIZATION OF THE HEARSAY Il SPEECH UNDERSTANDING SYSTEM

Victor R. Lesser, Richard D. Fennell, Lee D. Erman, and D. Raj Reddy

Compuler Science Departments
Carnegie-Mellon University
Pittsburgh, Pa. 15213

ABSTRACT

Hearsay II (HSII) 1s a system currently under deelopmert at
Carnegie-Mellon University fo study the connected speech
understanding problem. It 1s simi.>r to Hearsay | (HSt) in that it is
based on the hypothesize-and-test paradigm, using cooperating
independent knowledge sources communicating with each other
through a global data structure (blackboard). It differs in the

sense that many of current limitations and shortcomings of HS1 are
resolved in HStL

The main new features of the Hearsay Il system structure
are: .) the representation of knowledge as self-activating,
asynchronous, parallel processes, 2) the representation of the
paruial analysis i1n a generalized 3-dimensional network (the
dimensions being level of representation (e.g., acoustic, phonetic,
phonemic, lexical, syntactic), time, and alternatives) with contextual
and structural support connections explicitly specified, 3) a
convenient modular structure for incorporating rew knowledge
into the system at any level, and 4) a system structure suitable
for execution on a paralle! processing system.

The main task domain under study is the retrieval of daily
wire-service news stories upon voice request by the user. The

man parametric representalions used for this study are 1/3-
octave filter-bank and LPC-derived vocal tract parameters
(Knudsen, 1974, and Kriz, 1974). The acoustic segmentaticn and
labeling proredures are parameter-independent (Goldberg, et al,
1974). The acoustic, phonetic, and phonological components
(Shockey and Erman, 1974) are feature-based rewriting rules
which transform the segmental units into higher-level phonetic
units. The vocabulary size for the task s approximately 1200
words. This vocabulary information 1s used {o generate word-
level hypotheses from phonetic and surface-phonemic levels based
on prosodic (stress) information. The syntax for the task permits
simple English-like sentences and is used to generate hypotheses
based on the probability of occurrence of that grammatical
construct (Rich, 1974). The semantic model is based on the news
items of the day, analysis of the conversation, and the presence of
certain content words in the partial analysis. This knowledge is to
be represented as a production system. The system is expected
to be operational on a 16-processor mini-computer system (Bell,
et al, 1971) being built at CMU.

This paper deals primarily with the issues of the sysiem
organization of the Hearsay Il system.

INTRODUCTION

The Hearsay 1l (HSIl) speech understanding system is a
successor to the Hearsay (HSH system (Reddy, et al, 1973a,
1973b). HSII represents, in terms of both its system organization
and (s speech knowledge, a significant increase In sophistication
and generality over HSt. The development of HSII has been based
on two years of experience with a running version of HSI, a desire
to exploit multiprocessor and network computer archit. _ture tor
efficient implementation (Bell, et al., 1971, 1973, and Erman, et al,,
1973), and a desire to handle more complex speech task domains
(e.g., larger vocabularies, less restricted grammars, and 2 more
complete set of knowledge sources inrcluding prosodics, user
models, elc.). While from a conceptual point of view HSIl is a
natural extension of the framewcrk that HSI posited for a speech
understanding system, it differs significantly in its design and in ils
details of implementation.

The HEARSAY System Model

HSl was baced on the view that the inherently errorful
nature of connected speech processing could be handled only
through the efficient use of multiole, diverse sources of knowledge
(Reddy, et al, 1970, and Newell, et al, 1971). The major focus of
the design of HSt was the development of a framework for
representing these diverse s>urces of knowledge 7 i their
cooperalion {Reddy and Newell, 1974) This framework is the
conceptual legacy which forms the basis for the HSIl design.

There are four dimensions along which knowledge
representation in HSI can be described:

1) function,

2) structure,

3) cooperation,

4) attention focusing.

The function of a knowledge source (KS) in HSl has three
aspecls. The first is for the KS to know when it has something
useful 10 contribute, the second is to contribute ils knowledge
through the mechanism of making a hypothesis (guess) aboutl some
aspect of the speech utlerance, and the third is to evaluate the
contribution of other knowledge sources, i.e, to verify and reorder
(or reject) the hypotheses made by other knowledge sources.
Each of these aspects of a KS is carried out with respect to a
particular confext, the context being some subset cf the
previously generated hypotheses. Thus, new knowledge is built
upon the educated guesses made at some previous time by cther
knowledge sources.

The structure of each knowiedge source in HSI1 is specified
so that it is independent and separable from all other KS’s in the
system. This permits the easy addition of rew types of KS’s and
replacement of KS’s with alternative versions of those KS's. Thus,
the system structure can be easily adapted to new speech task
domains which have KS's specific to that domain, and the
contribution of a particular KS 1o the tofal recognition effort can
be more easily evalyated

+ This research was supported in part by the Advanced Research Projects A;ency of
the Department of Defense under contract no. F43620-73-C-0074 and monitored by

the Air Farce Office of Scientific Research.
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The choice o! a tramework tor ¢ooperalion among
knowledge sources is intimately inlerwoven with the tunction and
structure of krow'2dpe in HSL. The mechanism for KS cooperation
involves hypothesizing and testing (creating and evaluating)
hypotheses in a global data base (blackboard). Tne generation and
modification ot globally accessible hypotheses thus becomes the
primary means ot commurucation between diverse KS's. This
mechamism of cooperation allows a KS to contribute kncwledge
without being aware ot which other KS's wil' use ite knowledge or
which KS conlriouted the knowledge that it used. Thus, each KS
can be made independent and separable.

The global data base that KS's uce for cooperation contains
many possible interpretations ot the speech data. Each of these
interpretations represents a “limited” context in which a KS can
possibly contribute intormation by orcposing or validating
hypotheses. Attention focusing of a KS involves choosing which of
these lmited contexts 1 will operate in and for how much
processing time. The altention focusing cirategy is decoupled
from the functions of individual knowledge sources. Thus, the
decision of whether a KS can contribute in a particular context is
local to the KS, while the ascignmenl of that KS 1o one of the many
contexts on which it can possibly oparate is made more globally.
This decoupling ot focusing strategy from knowledge acquisition,
together with the decoupling of the data e~ .ronment (global data
base) from control flow (KS invocation) and the limited context in
which a KS operates, permits a quick refocusing of attention of
KS’s. The ability to retocus quickly 1s very important in a speech
understanding system because the errorful nature of speech data
and processing leads to many potenhal interpretations of the
speech. Thus, as soon as possible after an interpretation no
longer seems the most promising, the activity of the system should
be retocused lo the new most promising interpretation.

CVERVIEW OF HEARSAY |

The tollowing is a brief description of Ihe HSI
implementation for this model of knowledge source representalion
and cooperation. (A more complete description is contained in
Reddy, e! al, 1973a, 1973b.) This descrizt:icrn will then be used to
*n'rast the differences of implementation philosophy between HS1

d HSII

HEARSAY | Implementation Overview

The giobal data base of HSI consists of partial sentence
hypotheses, each being a sequence of words with non-overlapping
time locations in the ulterance. It is a partial sentence hypothesis
because not all of the utterance may Le described by ihe given
sequerce of words. In particular, gaps in the knowledge of the
ullerance are designated by “filler” words. The pariial sentence
hypotheses also contain confidence ralings for each word
hypothesis and a composile rating for the overall sequence Of
words. A sentence hypothesis 1s the focal point that is used to
Invoke a knowledge source. The sentence hypothesis also
contains the accumulalion of all information that any knowledge
source has contributed to that hypothesis.

Knowledge sources are in oked in a lockstep sequence
consisling of three phases: poll, hypothesize, and lesl. At each
phase, all kncwledge sources are invoked for that phase, and the
next phase does not commence untit all KS’s have completed the
current one. The poll phase involves determining which KS's have
something to contribute to the sentence hypothesis which 15

April, 1974 (CMU;

ko ks e i . s o b g

p12 - M2

currently being tocused upon; polling also determines how
contident each KS 15 aboul its proposed conlnibutions. The
hypothesize phase consists of invoking the KS showing the most
tonhdence about s proposed contribution of knowledge. This KS
the' hypothesizes ¢ cet of possible words (option words) for some
{one) "filler” word n the speech ulterance. The te:ling phase
consists ot each KS evaluat.ag (verifying) the possible option
words with respect to the given context. Atter all knowledge
sources have completed their veriticaticns, the option words which
seem most likely, based on the combined ratings of all the KS's,
are then used to construci new partial sentence hypotheses. The
global da'a base is then re-evaluated to find the most promising
sentence hypothesis; this hypothesis then becomes the focal point
for the next hypothesize-and-test cycle.

Problems with HEARSAY |

There are four major design decisions in the HSI
implementation of knowledge representation znd coope “ation
which prevent HSI from being applied o more complex spe~ch
tasks or multiprocesso. ¢nvironments.

The first, and most important, of these limiting decisions
concerns the use of the hypothesize-and-test paradigm. As
implemented in HS!, the paradigm is exploited only at the word
level. The implication of hypothesizing and testing al only the
word level ic that the knowledge representation is uniform only
with respect to cooperation at that level. That 1s, the information
content of any element in the glohal deta base is limited to a
description at the word level. The addition nf non-word level KS's
(i.e,, KS's cooperating via either sub-word levels, such as syllables
or phones, or via super-word levels, such as phrases or concepts)
thus becomes cumbersome because this knowledge must somehow
be relaled 1o hypothesizing and testing at the word level. This
approach to non-word level KS’s makes it difficult to add non-
word knowledge and to evaluate the contribution of this
knowledge. In addition, the inability to share non-word level
inforination among KS’s causes such information to he recomputed
by each KS that needs it.

Secondly, HSI constrains the hypothesize-and-test paradigm
to operate in a lockstep control sequence. The effect of this
decision is to limit parallelism, because the time required to
complete a hypothesize-and-test cycle is the maximum time
required by any single hypothesizer KS plus the maximum time
required by any single verifier (tesling) KS. Another disadvantage
of this control scheme is that it increases the time it takes the
system lo refocus attention, because there is no provision for any
communication of partial resulls among KS's. Thus, for example, a
rejection of a particular oplion word by a KS will not be noticed
until all the KS's have tes..? sii the option words.

The third weakress in the HSI implementation concerns the
structure of the global data base: there is no provision for
specitying relationships among alternative sentence hypotheses.
The absence of relal onal siruclures among hypntheses has the
effert of increasing fhe overall computation time and increasing
the time o refocus altention, because the information gained by
working on one hypothesis cannot be shared by propagating it to
other relevant hypotheses.

The fourth limiting design decision relates 1o how a global
problem-colving strategy (policy) 1s implemented in HSI: policy
decit'n. 5, such as those involving allention focusing, are
centran.=d (in a "Recognition Overlord™), and there is no coherent

1EEE Symp. Speech Recognition

S, S s e




structure for the policy agorithms. “he eftecl of hawrg no
explicit system slructure for implemenling policy decisions makes
it very awhkwaro to add or delete new policy algorithms and
ditticult fo analyze the effectiveness of a policy and its interaction
with other nolicies.

OVERVIEW OF HEARSAY 1]

Experience with HSt (as described abcve) has led to several
important observations about a me-¢ general, unitorm, and natural
s.cucture for representing and operatiag on the (dynamic) state of
the utterance recognition.s

t The internal structure of hypotheses at different levels of
knowledge representation may be essentially the same,
except for the primitive unit of information held in an
hypothesis. This structural homogeneity in the global data
base allows the actions ot hypothesizing and testing at
these various levels to be treated 1n a unitorm manner.

2. The diftc “ent types of knowledge (and their relationships)
present in speech may be naturally represented in a
single, uniform data structure. This data structure 1s 3-
dimensional: one ci-1ension represents information levels
(e.g., phrasal, lexicat, phonetic), the second represents
speech time, and the third dimension contains atternative
{competing) nypotheses at a particular level and time.
These three dimensions torm a converiert addressing
structure for tocating hypotheses.

3. There 1s a conceptually simpte and uniform way ot
dynamically relating hypotheses at one tevel of “nowledge
to alternative hypotheses at that level and to hypotheses
at other knowledge levels in the structure. The resulting
structure 1s an AND/OR graph with modifications which
provide for temporal relationships and selective
dependency relationships. s+

System Structure

The main goa! of the HStI design 1s to extend the concepts
developed 1n HSt for the rep/csentation and cooperation of
knowledge at the word level o alt tevels of knowledge needed in a
speech understanding system, based on the preceding
observations.

The generalization of the hypothesize-and-test paradigm fo
all levels o! speech knowtedge implies the need for a mechanism
for transterring information among levets. This mechanism 1s
atready embodied in the hypothesize-and-test paradigm; that 1s,
one can characterize two types ot hypothesization a knowledge
source might be called upon to perform: horizontal and vertical
hypothesization. A hypothesization 1s horizontal when a KS uses
cortextual information at a given knowledge level to predict new
hypotheses at the same level, {(e.g., the h_ypolhesaahon that the
word "might™ mipht follow the the sequence of words "day" -
"and™); whereas a hypothesization 1s vertical when a KS uses
information at one level in the data base to predict new

s The meaning of these observations wiii be made more clear by
the further descriptions below.

s This latter feature reters to "connechior matricis” and s
described below in more detail.
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hypotheses at 4 aiterenl level (eg, the generation of a
hypothesis that a [T] occurred when a segment ol silence 15
followed by a segment of aspiration)

The HSHt implementalior of the hypothesize-and-test
baradigm has also resulted in a generahzation of the lockstep
control scheme for KS sequencing employed by HSE. HSHt relaxes
the constraints on the hypothesize-and-test paradigm and allows
the knowledge-source processes 10 run in an asynchronous, data-
directed manner. A knowledge source s instanhated as a
knowle_,s-source process whenever the data base exhibits
charac,eristics which sahisfy a “precondition” of the knowledge
source. A precondition ot a KS 1s a description of some partial
state of the data base which defines when and where the KS can
contribute its knowledge by modifying the data base. Such a
modification might be adding new hypotheses proposed by the KS
(at the information level appropriate for that KS) or veritying
{crihicizing) hypotheses which already exist. The modifications
made by any given knowledge-source process are expected to
trigger further knowledge sources by creating new conditions in
the data base to which those knowledge sources respond. The
structure of a hypothesis has been so designed as fo allow the
preconditions of most KS's 1o be sensitive to a single, simple
change in some hypothesis {such as the changing ot a rating or the
creation of a structural link). Through this data-directed
inferpretation of the hypothesize-and-test paradigm, HSII
knowledge sources exhibit a high degree of asynchrony and
polenha' parallelism. A side-effect of this more general control
scheme for HSHt is that the sirategy need not be centralized and
implemented as a monolithic overlord, bul rather can be
implemented as poticy modules which operate in precisely the same
manner as KS's,

The 3-dimensional data base, augmented by the AND/OR
structural relationships specified over thal data base, permits
information generated by one knowledge source to be: 1)
retained for use by other KS's, and 2) quickly propagated to
other relevant parts of the data base. This retention and
propagation provide two importan: features for solving a complex
problem in which errors are highly hkely. First, quick refocusing
can occur when a particular path ro longer appears promising.
Second, "selective” backtracking may be used; 1.e., when a KS tinds
that it has made an incorrect desision, it does not have to eliminate
all information gererated since that decision, but rather only that
subset which depends on the incorrect decision. in this way,
information generated by one knowledge suurce 1s retained and is
usable by itself and other KS's in other relevani contexts.

Summarizing, HSHt 1s based on tlie views: 1) that the state
of the recognition can be represented in a unitorm, mullitevel data
base, and 2) thal speech knowledge can be characterized in a
natural manner by describing many <mall knowledge sources.
These knowledge sources react o certain states of the data base
(via therr preconditions) and, once instanhialed as knowledge-
source processes, provide their own changes to the data base
which contribute to the progress of the recognition. The
hypothesize-and-te:t paradigm, when stated in sutficiently non-
restricive (parallel) terms, serves to describe the general
interactions among these kncwledge sources. in particular,
changes made by one or more knowledge-source processes may
trigger other knowledge sources 'o react to these changes by
vahdating (testing) them or hypothesizing further changes. The
intent of HSHt 1s to provide a tramework within which to explare
various ccnfigurations of information levels, knowtedge sources,
and global strategies.s
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From a more general point of view, the goal of HSIt 15 to
provide a multiprocess-oriented software architecture to serve as
a basis for systems of cooperating (but independent and
asynchronous) data-directed knowledge-source processes. The
purpose of scch a structure 15 to achieve effective parallel search
over a general artificial intelligence problem-solving graph,
employing the hypothesize-and-test paradigm to generate the
search graph and using a unitorm, interconnected, multilevel global
data base as tne primary means of interprocess communication.

HEARSAY Il SYSTEM DESIGN AND IMPLEMENTATION

One can derive from the description of the desired HSIi
recognition process given above several basic components of the
required system structure. First, a suftficiently general structured
global data base is needed, through which the knowledge sources
may communicate by inserting hypotheses and by inspecting and
modifying the hypotheses placed there by other knowledge
sources. Second, some means for describing the various
knowledge sources and their internal processing capabilities 1s
required. Third, in order to have knowledge sources activated in a
data-directed manner, a method is required by which a set of
precondiions may be specified and associated with each
knowledge source. Fourth, in order to detect the satisfaction of
these preconditions and in order to allow knowledge sources to
locate parts of the data base in which they are interested, two
mechanisms are needed: 1) a monioring meghanism to record
where in the data base changes have occuired and the nature ot
those changes, and 2) an associalive cefrieval meghanism for

accessing parts of the data base which conform to particular

patternc which are specified as matching-prototypes.

Elements of the System Structure

The following sections outline the HSIt implementation of the
various basic syttem components.

Global Dafa Base The design of HSIl i1s centered around a
global data base (blackboard) whici. is accessible 1o all knowledge-
source processes. The global data base is structured as a unitorm,
multilevel, interconnected dat: <tructure.

Each level in the data base contains a {potentially complete)
representation of the utterance: tre leve's are differentiated by
the units that make up the reprasentatio ), e.g, phrases, words,
phonemes. The system structure of HStI does not pre-specify
what the levels in the global data structure .re to be. A particular
configuration, called HSII-CO (Contigura'ion Zero), ts being
implemented as the first test of the HSHt structure. Figure |
shows a schematic of the levels oi HSII-CO. A r.ore detailed
description and justification for this particular configuration can be
tound 1n Shockey and Erman (1974). This contiguration wil! be
used as the basis for examples to illustrate various aspects ot the
HSIl system,

Paramelric Level - The parametric level holds the most basic
representation of the utte-ance that the system has; it is the
only direct input to the maciune about the acoustic signal,

It s interecting to note that this generalized torm of
hypothesize-and-lest leads to a system orgamization with some
characterishics similar tc QA4 (Rulifson, et al, 1973) and
PLANNER (Hewitt, 1972). tn particular, there are strong
similarihes in the data-directed sequencing of processes.
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Figure 1. The Levels in HSI{-CO.

Several ditferent sets ot parameters are being used in HSti-
CO  interchangeably: 1/3-octave filter-band energies
measured every 10 msec, LPC-derived vocal-tract
parameters (Knudsen, 1974), and wide-band energies and
Zero-crossing counts.

Segmental Level - This level represents the utterance as
tabeled acoustic segments. Although the set ot labels may be
phonetic-like, the level is not intended to be phonetic -- the
segmentation and labeling retlect acoustic manitestation and
do not, for example, attempt to compensate for the context of
the segments or attzinpt to combine acoustically dissimilar
segments into (phonetic) units.

As with all levels, any particular portion of the utterance may
be represented by more than one competing hypcthesis (i.e.,
multiple segmentations and tabelings may co-exist).

Phonetic Leve] - At this level, the utterance is represented by a
phonetic descrintion. This is a broad phonetic description in
that the size (duration) of the units 1s on the order ot the
“size” ot phonemes; it is a fine phonetic description to the
extent that each element is tabeled with a tairty cetailed
allophonic classitication (e.g, "stressed, nasalized (.

Surface-Phonemic Level - This level, named by seemingly
contradicting terms, represents the utterance by phoneme-
tike units, with the addition of modifiers such as stress and
boundary (word, morpheme, syllable) markings,

Syllabic Leve| - The unit of representation here is the sytlable.

Lexical Level - The unit of information at this level is the word.

(Note again that at any level competing representations can
be accommodated.)

Phrasal Level - Syntactic elements appear at this level. In fact,
since a ftevel may contain arbitrarily many “sub-tevets” of
elements structured as a modified AND/OR graph, traditional
kinds of syntactic trees can be directly represented here.

Conceptual Level - The unmits at this level are "conceots!” As

with the phrasal level, it may be appropriate to use the graph

structure of the data base to indicate relationships among
different concent-

The basic unit in the data structure s a node; a node
represents the hypothesis that a particular element exists in the
utterance. For example, an hypothesis at the phonetic level may
be labeled as 'T". Besides contaiming the hypothesis element name,
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a node holds severat other kinds of informalion, including: 1) a
correlation with a particular time period in the speech utterance,s
2) scheduling parameturs (validily ratings, attenlion forus factors,
measures of computing effort expended, etc.), and ) connecticn
information which relales the node to other nodes in the dala base

Structural relationships between nodes ‘hypotheses) are
represanted through the use of links; links provide a means tor
specifying conlexlual abstractions about the relationships of
hypotheses A link 15 an element in the dala structure which
associates two nodes as an orde.ed par;, one of the nodes 1s
termed the upper hypothesis, and the other is called the lower
hypothesis. The lower hypothesis 15 said to support the upper
hypothesis; the upper hypothesis 1s cailled a use ot the lower one.
There are several types of links; in general, if a node serves as
the upper hypothesis tor more than one link, all of those links
must be of the same type. Tnus, one can talk of the "type ot the
hypothesis,” which i1s the same as the type ot all of its lower finks.

‘will® ‘noun’

(SEQ) (OPT)

AN

‘boy’| [toy*|]'tie’

!wv llH‘ th

Figure 2. Examples ot SECUENCE and OPTION Relationships.

The two most important structural relationship types are
SEQUENCE ana OPTION:

A SEQUENCE node 1s an hypothesis that 1s supported by a
(timewise) sequential set ot hypotheses at a lower tevel (or
sublevel -- see below). For example, Figure 2a shows an
hypothesis ot 'will' at the 'exical level supported by the
(tnne-Jordered contiguous sequence of ‘W', 'IH, and 'L at
lhe surface-phonemic level. The interpretation ot a
SEQUENCE nade 1s that all of the lower hypotheses must
be valid in order to support the upper hypothesis.

An OPTION node 1s an hypothesis that has alternative
supports trom two or more hypotheses, each ot which
covers essentially the same time period. For example,
Figure 2b shows the hypothesis of ‘noun' at the phrasal
level as being supported by any of ‘boy’, ‘toy”", or ‘tie’, all
ot which are competing word hypctheses
(approximately) the same time area.ss

covering

Figure 3 1s an example ot a larger tragment of the global
data structure. The level of an hypothesis 1s indicated by its
vertical position; the names of the levels are given on the left.

¢+ This time period 1s specified with an explicit estimation ot
fuzziness, even 10 the extent ot spanning the entire utterance.

s¢ In addition 1o SEQUENCE and OPTION, there are two kinds ot
structural relationships which are generalizations 2f them: An
AND node 15 similar to a SEQUENCE node except that there is no
implication of any time sequentiality amorg the supports -- they
may overlap or be disjoint. An OR node s similar to an OPTION
node n that |he supports represeni alternatives, but (as with
the AND node) there 1s no time regiirement.
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‘gueztion'
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Phrd 4L

‘rodzi-question’

LEX.CAL ‘i ll”
(5E01
Fd
SURFACE -
PHONEMIC

Figure 3. An Example ot the Dala Structure.

Time location 1s approximately indicated by horizontal placement,
but duration s only very roughly indicated (eg., the boxes
surrounding the two hypotheses at the phrasal level should be
much wider). Altarnatives are indicated by proximity; for example,
'will' and ‘woula’ are word hypotheses covering the same time
span. Likewise, ‘question® and ‘modal-question’, ‘youl® and ‘you2',
and 'J' and 'Y all represent pairs ot alternatives.

This example illustrates several features of the data
structure:

The hypothesis ‘you, at the lexical level, has two alternative
phonemic "spellings” indicated; the hypotheses labeled
'youl' and ‘you2' are nodes created, slso at the lexical
level, to hold those alternatives. In general, such sub-
tevels may be created arbitrarily.

The link between ‘youl® and ‘D" 1s a special kind of SEQUENCE
tink (indicated here by a dashed line) called a CONTEXT link;
a CONTEXT Ilink indicates that the lower hypothesis
supports the upper one and 15 contiguous to its brother
links, but it 1s not "part ot” the upper hypothesis in the
sense that it 1s not within the time interval ot the upper
hypothesis -- rather, it supplies a context for its
brother(s). In this case, ane may "read” the structure as
stating “youl® is composed ol ‘J' followed by ‘AX' (schwa)
in the context of the preceding 'O (This reflects the
phonological rule that "would you® i1s often spoken as
"would-ja™) Thus, a CONTEXT link allows important
contextuat relationships to be represented without
violating the mplicit time assumphions about SEQUENCE
nodes.

The phonemic speling of tre wora "you" held by ‘youl’
includes a contextual constrant (as just described), the
‘you2' oplion does notl have this constrant. However,
'youl® and ‘you2™ are such similar hypotheses that there is
strong reason for wanting to retan them as alternative
options under ‘you' (as indicated in Figure 3), rather than
representing them unconnectedly. In general, the problem
1s that the use of an hypothe<.s imples certain contextual
assumptions about its environment, wnile the support ot an
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hypothesis may itself be predicated on a particular set of
contextual assumptions. A mechar'sm, called & connection
matrix, exists in the dafa structure to represent thic kind of
relationship by specifying, for an OPTION hypothesis, which
of 1ts alternative supports are applicable (“connected to")
which of its uses. In this example, the connection matrix of
‘you' (symbolized in Figure 3 by the 2-dimensional binary
matrix in the nnde) specifies that support ‘youl® 1s relevant
to use ‘question’ (but not fo ‘modal-question’) .nd that
support ‘you2' is relevant to both uses. The use of a
connecfior matrix allows the efforts of preceding KS
decisions to be accumulated for fufure use and modification
without necessitating contextual duphcation of parts of the
data base. Thus, much of the duplication of effort due to
the backtracking mode of HSI 15 avoided in HSII.

Besides showing structural relationships (1.e., that one umit is
composed of several other units), a link 1s a statement about the
degree to which one hypothesis implies {ie., gives evidence for
the existence of) another hypothesis. The strength of the
implication 15 held 25 information on the tink. The sense of the
implication may be negative; that is, a link may indicate that one
hypothesis s evidence for the |gvalidity of another. Finally, this
statement of implication 1s bi-directional; the existence of the
upper hypothesis may give credence to the existence of the lower
hypothesis and yice yersa.

The nature of the implications represented by the links
provides a umform basis for propagating changes made in one part
of the data structure to other relevant parts without necessarily
requiring the infervention of particular knowledge sources at each
step. Considering the example of Figure 3, assume that the
vahdity of fhe hypofhesis labeled ‘J' 1s modified by some KS
(presuitably operating at the phonefic level) and becomes very
low. One possible scenario for rippling this change through the
data base 1s:

First, the estimated validity of ‘youl’ is reduced, because 'J'
is a lower hypothesis of ‘youl!

This, in turn, may cau-e the rating of 'you’ !0 be reduced.

The cornection matrix at 'you' spec:fies that ‘yout® is not
relevant lo ‘modal-question; so the latter hypothesis is not
affected by the change in rating of the former. Notice that
the evistence of the connectron matrix allows this decision
to be made locally in the data structure, without having to
search back down to the ‘D" and *J;

‘Question; however, is supported by ‘yout® (through the
connection matrix at ‘you’), so its rating 1s affzcted.

Further propagations can continue to occur, perhaps down
the other SEQUENCE 'inks under ‘question’ and ‘youl’

Knowledge Source Specification A kno.wledge source Is
specified in three parts: 1) the conditions under which it 1s to be
activated (in terms of the data base conditions in which 1t s
interested, as described in the section on "preconditions” below),
2) the kinds of changes It makes to the global data base, and 3) a
procedural statement (program) of the algorithm which
accomplishes those changes. A knowledge source 1s thus defined
as possessing some processing capability which is able to solve

some subproblem, given appropriate circumstances for its
activation,
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The decomposition of the overall recognition task into
various knowledge sources 1s regarded as being a natural
decomposition. That 15, the umits of the decomposition represent
those pieces of knowledge which can be distinguished and
recognized as being sumehow naturally independent.s Given a
sufficient <et of such knowledge sources (that i1s, a set that
provides enc ugh overall connectivity among the various tevels of
the data base that a final recugmtion can be attained), the
collection 1s called the “overall recognition system”” Such a scheme
of "inverse cecomposition” (or, composition) seems very natural
for many problem-solving tasks, and 1t fits well into the
hypothesize-and-test approach to problem-solving. As long as a
suffiient "covering set"™ for the data base connections s
maintained, one can freely add new knowledge sources, or replace
or delete old ones. Each knowledge source i1s in some sense self-
contained, but each is expected to cooperate with the other
knowledge sources that happen to be present in the system at
that time.

- Levels - - Knowledge 3ources -

CONCEPTUAL ——m——

T iRASAL

Syntactic Word Hypothesizer
LEXICAL

Phoneme Hyoothesizer
SYLLABIC
SURFACE-

PHONEMIC

Phone--Phoneme Synchronizer
PHONETIC

Phone Synthesizer
SEGMENTAL

Segmenter-Classifier
PARAMETRtC

Figure 4. The First Knowledge Sources for HSII-CO.

As examples of knowledige sources, Figure 4 shows the first
set of processes implemented for HSH-CO. The levets are
indicated as horizontal lines in the figure and are labeled at the
left. The knowledge sources are indicated by arcs connecting
levels; the starting point(s) of an arc indicates the level(s) of major
“input” for the KS, and the end point indicates the "output® tevel
where the knowledge source’s major actions occur. In general, the
action of most of these particular knowledge sources is to create

* The approach taken in knowledge source decomposition is not
an attempt to characlerize somehow the overall recognition
process and then apply some sort of traffic flow analysis to its
internat workings in order to decompose the total process into
min'mally interacting knowledge sources. Rather, knowledge
sources are defived by starting with some “stuitive notion about
the various pieces of knowledge which could be incorporated in
a useful way to telp achieve a solution.
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links between hypotheses on its input level(s) and: 1) existing
hypotheses on its output level, it appropriale ones are already
there, or 2) hypotheses that il creates on its output levet.

The Segmenter-Classitier knowledge source uses the description
ot the speech signal to produce a labeled acoustic
segmentation. (See Goldberg, et at, (1974) tor a description
of the algorithm being used) For any portion of the
utterance, several possible altervative segmentations and
tabels may be produced.

The Phone Synthesizer uses labeled acoustic segments 10
generate etements at the phonetic levet. This procedure is
sometimes a farly direct renaming ot an hypothesis at the
segmentat level, perhaps using the context ot adjacent
segments. tn other cases, phone synthesis requires the
combining of several segments (e.g, the genera‘ion ol [t]
trom a segment of sience followed by a segment of
aspiration) or the insertion ol phones not indicated directly
by the segmentation (eg., hypothesizing the existence ot an
[t] if a vowet seems velarized and there is no [t] in the
neighborhood). This KS 1s triggered whenever a new
hypothesis i1s created at the segmental level.

The Syntactic Word Hypolhesizer uses knowledge at the phrasat
level to predict possible new words at the lexical level which
are adjacent (left or right) fo words previously generated at
the lexical tevel. (Rich (1974) contains a description ot the
probabibstic  syntax method being used here.) This
knowledge source 1s activated at the beginning of an
ulterance recognition attempt and, subsequently, whenever a
new word 1s created at the lexicat levet.

The Phoneme Hypothesizer knowtedge source 1s aclivated
whenever a word hypothesis i1s created (at the lexicat level)
which 1s nol yel supported by hypotheses al the surtace-
phonemic tevel. tts action s to create one or more sequences
at the .urfaze-phonemic levet which represent alternative
pronounciations ot the word. (These pronounciations are
currently pre-specitied as entries in a dictionary.)

Tte Phone-Phoneme Synchronizer 1s triggered whenever an
hypothesis 1s created at ether the phoneiic or the sJrlace-
phonemic level. This KS attempts to tnk up the new
hypothesis with hypotheses at the cther level. This tinking
may be many-10-une in either direction.

Figure 5 shows the inial HSII-CO knowledge sources ol
Figure 4 augmented with tour additional ones which are being
implemented or are planned

The Semantic Word Hypolhesizer uses semantic and pragmatic
information about the task (news retrieval, in this case) to
predict word< at the lexical level.

The Word Candidate Generator uses phonetic intormation
(primanly just al ctressed locations and other areas ~f high
phonetic reliability) 1o generate word hypotheses. Thie witl
be accomphished in a two-stage process, with a stop at the
syllabic level, trom which lexical retrieval is more effective.

The Phonological Rule Applier rewrites sequences at the
surtace-phonemic level. This KS i1s used: t) to augment the
dictionary lookup of the Phoneme Hypothesizer, and 2) to
handle word boundary condilions that can be predicted by
rule.
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- Levels - - Knowledge Sources -
CONCEPTUAL
- Semantic Word Hypothesizer

PHRASAL

=--Syntactic Word Hypothesizer
LEXICAL

= = == Phoneme Hypothesizer
SYLLABIC
----- Word Candidate Generator

- = Phonotogical Rule Apptier

SURFACE-
PHONEMLIC
= = = - Phone--Phoneme Synchronizer

PHONETtC

- - Phone Synthesizer

==Segment--Phone Synchronizer
SEGMENTAL )

- - -Parameter--Segment

Synchronizer
- - -+ Segmenter-Classifier

PARAMETRIC -

Figure 5. Augmented Knowtedge Source Set tor HStt-CO.

The primary duties ot the Segment-Phone Synchronizer and the
Parameter-Segment Synchronizer are similare to recover
lrom mistakes made by the (bottom-up) actions ot the Phone
Synthesizer and Segmenter-Classitier, respectively, by
allowing teedback trom the higher to the lower tevel.

The intre.duction ot these knowledge sources indicales the
modularitly and exltendability of the system in terms ot both
knowledge sources and levets. In particutar, notice that even
though the purpose of some KS is staled as "correcting errors
produced by other knowledge sources,” each k3 is independert ot
the others. Yet additional knowledge sources will be added to the
contiguration as the need for them 1s seen and as ideas tor their
imptementation are developed.

Matching-Prototvpos and  Assogialive Relrieval  The
asynchronous processing activity in HSt! is primarity data-directed;
th's impties the need tor some mechanism whereby one can
retrieve parts ol the globat data base in an associative manner.
HStt provides primitives for associativety searching the data base
tor hypotheses satistying specified conditicns (eg, linding atl
hypotheses at the phonetic levet which contan a vowel within a
certan time range). The search condition is specilied by a
malching=prototype, which 1s a partial specification ot the
components ot a hypothesis. This partial specification permits a
component to be characterized by: 1) a set ol desired values, or
2)a don’t-care condition, or 3)values ot components ol a
hypothesis previously derived by matching another protolype. A
matching-protolype can be cowpared aganst a set ol hypotheses.
Those hypotheses whose component values match thase specified
by the matching-protoi,pe are returned as the result ot the
search, Associative retrieval of structural relationships among
hypctheses is also provided by several primiives. More complf
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retrievals can be accomplished by combiming the retrieval
primitives 1n appropriate ways.

Preconditions and Change Sefs Associated with every
knowledge source 1s a specification of the data base conditions
required for the instantiation ot that knowledge source. Such
cpecifications, called preconditions, conceptually form an AND/OR
tree composed of matching-prototypes and structural relationships
wlhich, when applied to the data base in an associative manner,
detect the regions of the data base in which the knowledge source
's interested (f the precondition 1s capable of being satisfied at
that time). Alternatively, one mght think of the precondition
specification as a procedure, involving matching-prototypes and
structural relationships, which effectively evaluaies a conceptual
AND/OR tree. This procedure may contain arbitrariy complex
decisions (based on current and past modifications 'o the data
base) resulting 1n the activaticn ot desired knowledge sources
within the chosen contexts. The conte:t correspanding to the
discovered data base region which satisfies some knowledge
source’s precondition 1s used as an initial context in which to
instantiate that knowledge source as a new process. It there are
multiple regions in the data base that satisty the specitied
conditions, the knowledge source can be separately instantiated
for each context, or once with a list of all such contexts,

Whenever any KS performs a modification to the global data
base, the essence of the modification 1s preserved in a change set
appropriate to the change made (eg., one change set records
rating changes, while another records time range changes).
Change sets serve to categorize data base modifications (events)
and are thus useful in precondition evaluation since they himit the
areas in the data base that need to be exam:ned in detat. As
currently 1plemented, precondition evaluators exist as a set ot
procedures which monitor changes in the data base (ie., they
monitor additions to those change sets in wnich they are
interested). These precondition procedures are themselves data-
directed in tha! they are applied whenever sufticient changes have
teen riade in the global data base. In etfect, the precondition
procedures themselves have preconditions, albeit of a much
simpler form than those possible tor knowledge sources. For
example, a precondition procedure may specity that it should be
invoked (by a system precondition invoker) whenever changes
occur to two adjacen. hypotheses at the word levet or whenever
support 1s added to the phrasal level. By using the (coarse)
classifications afforded by change sets, the system avoids most
unnecessary data hase examinalions by the preccndition
procedures. The major point to be made i1s that the scheme of
precondition evaluation 1s event-driven, being based on the
occurrence of changes in the globil data base. In particular,
precondition evaluators are not involied in a form of busy waiting
in  hich they are constantly looking for something that 1s not yet
there.

Once invoked, a precondition procedure uses sequences of
associative retrievals and structural maliches on the data base in
an attempt to establish a context satistying the preconditions of
one or more ot "its" knowledge sources; any given precondition
procedure may be responsible for instantiating several (usually
related) knowledge sources. Notice that the data-directed nature
ot precondition evaluation and knowledge-source instantiation 1s
linked closely to the primitive functions that are abie to modity the
data bhase, for it 15 only at points of modification that a
precondition that was unsaticfied betore may become satistied.
Hence, data base modificatior routines have the responsibihity
(although perhaps ndirectiy) of activating the precondition
evaluation mechamsm.s
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Multiprocessing Considerations:
Some Problems and Their Solutions

A primary goal in the design ¢t HSIl i1s to exploit the
potential parallelism of the Hearsay systera model as fully as
possible. Several 1ssues associated with the introduction ot
parallel knowledge-source processes into HSIl will be described
and their current solutions outlined.

Local Contexts A precondition evaluator (process) 1s
invoked based on the occurrence of certain changes which have
taken place in the global data base since the last time the
evaluator was invoked; these changes, together with the state ot
the relevant parts of the global data base at the instant at which
the precondition evaluator 1s invoked, form a tocat context witiun
which the evaluator operates. Conceptually, at the instant ot its
invocation, the precondition evaluator takes a snapshot ot the
global data base and saves the substance of the changes that have
occurred to that moment, thereby preserving its local context.

The necessity of preserving this local context exists for
several reasons: 1) HSIl consists of asynchronous processes
sharing a common global data base which contains only the most
current data (that 1s, no history ot data modification 1s preserved
In the global data base), 2) since the precondition evaluators are
also executed asynchronously, each evali'ator is interested only in
changes in the data base which have occurred since the last time
that particular evaluator was executed (that s, the relevant set of
changes for a particular precondition evaluator is time-dependent
on the last execution of that evaluator), and 3) further
modifications to the global data base which are of interest to a
given knowledge-source process may occur between the time of
that knowledge-source process’s instantialion and the time of its
completion (in particular, such modifications and their relationship
to data base values which existed at the time ot the instantiation
ot the knowledge-source process may influence the computation of
that knowledge-source process). Hence, the problem of creation
of local contexts exists, as do the associated problems of signalling
a knowledge-source process when its local context is no longer
valid and of updating these contexts as further changes occur in
the global data base.

Consider the follcwing time sequence of events:

* One might thins ot HSII as a production system (Newell, 1973)
which 1s evecuted  asynchrorously.  The  preconditions
correspcend to the left-hand sides (conditions) of productions,
and the knowledge sources correspond to the right-hand sides
(actions) of the productions. Conceptually, these left-hand sides
are evaluated continuously. When a precondition 1s satisfied, an
instantiation of the corresponding right-hand side of its
production 1s created; this instantiation 15 executed at some

arbitrary subsequent time (perhaps subject to instantiation
scheduling constraints).
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T1. start precondition evaluator PRE

(triggered by data base changes)
T2: PRE instantiates a knowledge-source process KS
T3: end PRE

T4. start KS

T5: after KS 1evalidation ot | recondition
<computation>

T6:. KS modities global data base
<computation>

T7: KS modities global data base again

T8: end KS

PRE is activated to respond to changes occurring in the
global data base. PRE should execute in the context ot changes
existing at time TI (since thal context contains the changes which
caused PRE to be activated). KS is instantiated (readied tor
running) at T2 due to further conditions PRE discovered about the
change context of Tl. Hence, PRE should pass *ne context of Tl
as the initial environment in which to run KS.

By time T4, when KS actually starts to execule, other
changes could have occurred in the git bal data base due to the
actions of other knowledge-source frocesses. So KS should
examine these new updating changes (those occurring between Tl
and T4) and revalidate its precondition, it necessary. Atler
revalidation, KS assumes the updated context of T5, and it
proceeds to base its computation on the context ot changes as ot
T5.

When KS wishes to perform an actual update of elements ot
the glcbal data base at T6, it must examine the changes to the
global data base that occurred between TS and T6 to see if any
other knowledge-source processes may have violated KS’s
preconditions, thereby invalidating its ccmputations. Having
pertormed this ravalidation and any data base updating, KS should
update its context to retlect changes up to Th tor use in its
further computation. At T7, KS must look for further possible
invalidations to its most recent computations, due to possible
changes in the giobal data base by other knowledge-source
proarecec, guring the time period T6 to T7. When KS (which is an
instanti:! ot some xnow'edze source) completes its actions at
T8, its local context may be deleted.

Changes occurring between instantiations of a knowledge
source are accumulated in the local contexts ot the precondition
evaluators and may become part of the local context ot a tuture
instantiation of a knovledge source. Thus, the precondition
evaluators are always collecting data base changes (since these
evaluators are permanently instantiated), while individual
knowledge sour.e instantiations accumulate data base changes
only during their transient existence.

In practice, to create local contexts one need only save the
contents of changes which occur in the global data base (thereby
allowing the giobal data base to contain only the very latest
values). In particular, no massive .opy operations involving the
global data base are required. ihus, tor each data base event
caused by a modification primtive, the associated changes is

*+ The intormation which detines the change consists ot the locus
ot the change (1.e., a node name and a tield name), the old value
ot the tield, the revised value ot the tield, the name of the
changer (the umque knowledge-source instantiation name), and
the system time of the change.
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distributed (copied) into the local contexts (which can now be
characterized as local change sets* reterring to the previous
discussion on change sets) of all knowledge-source processes and
precondition evaluators who care Notice that not ¢ rery
knowledge-source process and precondition evaluator cares about
every change that takes place. For example, a tricative deteclor
will not care about a data base change associated with the
grouping of several words to form a syntactic phrase, but it is
interested in the hypcthesization of a word whose phonemic
spelling contains a tricative.

In order tor a knowledge-source (or precondition evaluator)
process to -eceive changes which occur to particular fiewos of
particular nodes which are in its local context, those tields need to
be tagged with that knowledge-source instantiation’s unique name.
Then, whei ever a modification is done to the global data base, a
message sigalling the change is sent to all who have tagged the
tield being changed. In addition, tha contents ot the change are
also distributed to the local contexts of those knowledge sources
receiving the message. This data tield tagging may be requested
by either a precondition evaluator which is about to instantiate a
knowledge source based on the values of particular fields (which
represent the context satistying the precondition), or by &
knowledge-source process, once instantiated, which may request
additional tields to be tagged.

For example, in its search through the global data base for
conditions satistying the preconditions ot some knowledge source,
a precondition evaluator may accumulate reterences to the data
tields which it has examined; and when the entire precondition has
been found ‘o be salistied, the preconditon evaluator tags those
fields (tor which it has accumulated reterences) with the nare of
the knowledge-source process it is about to instantiate. Similarly,
having been invoked, a knowledge-source process might wish to
do certain computations, but only it certain data tields are not
altered; the knowledge-source process itselt can tag these fields
and thereby be informed ot subsequent tampering with the tagged
fields. The union cf these tagged tields forms a critical set
(specitying the tields ot the loca! context for the knowledge-
source process) which is locked (see below) every time the
knowledge-source process wishes to modify the global data base.
Thus, after having locked the critical set and prior to pertorming
any update operations, the knowledge-source process can check
lo see whether any other kiowledge-source process has made
any changes which might invalidate the current knowledge
source's assumed context (and hence, perhaps, invalidate its
proposed update).ss For exau.nle, if a knowledge-source process
is veritying a hypothesis in the data base because its rating
exceeds 50 (i.e., the rating value represents par' of the local
context for the knowledge-source process), then before

* An alternalive to replicating the change intormation for the
various knowl~dge-source processes is to maintain a single
central copy ot those data, passing only reterences to the
centralized items to the various local contexts. The individual
change items may then be deleted trom their cantral change
sels whenever there are no further outstanding references to
that change.

s+ The characterization ot local contexts according to specific data
tields (which is made possible in part by the choice of levels ir
the giobal data base) helps to minimize the overhead associated
witn context maintenance. Also, the smaller the context, the
more tlexible the scheduling strategy may be (since it needs to
be less concerned with the time requireo tor a context swap on
a processor).
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performing any modifications on the data base which depend on
that assumption, the knowledgze-source process should check to be
sure thal no other knowledge-source process has invalidated the
rating assumption in the meantime,

Dala Base Deadlock Preventicn Any knowledge-source
process may request exclusive access to some collection of fields
at any time. Thus, unless some care is taken in ordering the
requests for such exclusive access, the possibility of getting into a
deadlock situation exists (where, for example, one knowledge -
source process 1s wailing for exclusive access to a field already
held exclusively by a second knowledge-source process, and yice
versa, resulting in neither process being abl. to proceed).
Applying a linear ordering lo the set of lockable fields and
requesting exclusive access according to that ordering is a
commonly-used means of deadlock avoidance In resource
allocation. However, this techmique works only 1if all the resources
(fields) to be locked are known ahead of time. The ability to tag a
data teld allows a knowledge-source process 1o locate and
examine 1n arbitrary order the set of hypotheses that will form the
context for a data base modification and then, only after the entire
setl of desired hypotheses (and links) has been detcrmined, to lock
the desired set and perform the modi‘ication.

To elimnate the possibilities of deadlock, the actual locking
operation s relegated 10 a system prustivz, ard a knowtedge-
source process is required to present to the locking primitive the
entire set of fields to which it wants exclusive access. This set s
then extended to include all fields in the critical set of the calling
knowledge-source process, for the reasons relating to context
revalidation given above The system locking primitive can then
request exclusive access for this union of data fields, o1 behalf of
the knowledge-source process, according to a universal ordering
scheme (such an ordering being possible since every nade in the
global dala base essentially has a umque serial number) which
assures that no deadlncas occur. Having been granted exclusive
access to all desired fields at once, the knowledge-source process
may first check to see whether there have been any changes to
the tagged dala fields. if there have been none, it can proceed to
perform its modifications ‘which modifications a-e sent to the local
contexts of others who ¢ re about such things) .lowever, if there
were changes, the knowle dge-source process can, after examining
the changed data fields, decide whether it still wants to perform
the modifications. When the knowledge-source process is finished
updating the data base, it releases all its locked fields by
execuling a system primitive unlocking operator. tn particular, the
system ensures that a knowledge-source process will not request
two lock operations without issuing an intervening unlock
operation. n this manner, any possibility of a data base deadlock
is eliminated.

Goal-Direcled Scheduling. The computational sequence of a
typical HSIt run may be characlerized by considering the states of
the utterance recognition at any particular data base level. For
example, if one considers the efforts in producing the word level
and traces the development of the "best" partial sentences, the
processing that will have been done 15 analogous to a general
tree-search, where each nocs= of the tree represents some
partially-completed sentence (with the eventual resultant sentence
being one of the leaves of the tree). The probi>m now 1s to guide
this tree search.ng so as to find the answer leaf in an optimal way
(according to some measure of oplimality). To achieve this end,
ralings are associated with every hypothesis and Iink in the globai
data base (and thus with every partial sentence node of the
analogous sea ch tree). Using these ratings (which are effectively
evaluation functions indicaling the goodness of the results of the
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work done so far with recpect fo a given partial sentence), one
may employ various tree-searching strategies fo advance the
search in some oplimal manner.

To complicate matlers further, however, HSIl is intended ‘o
be a multiprocess-oriented system. Therefore, schemes must be
devised for effectively searching a problem-solving graph using
parallel processes, since one can conceive of pursuing several
branches of the search praph in parallel by asynchroncusly
instantiating various knowlnrdge-source processes to evaluale
various alternative paths. Ono must also take into considerztion
the underlying hardware architecture. The physical placement of
the global data base and the knowledge-source processes will
have a very definite infiuence on the scheduling phlosophy chosen
and the resultant system efficiency.

To aid in making scheduling decisions, one .1ay associate
with every node in the globai data base some attention focusing
facters, which are indicators telling how much etfort has been
devoted to processing in this area of 'he search tree and how
desirable 1t 1s to devote further effort to this section of the tree.
Such attention focusing factars may also be associated with
various speech time regions to indicate interest in doing further
processing on certain rejions of the utterance, regardiess of any
particular information i2vel. Furihermore, attention focusing
factors are associated w'ih every data base modification, thereby
distributing at'ention focusing factors to the various change sets
which constitute the local contexts of the processes in the system.
The scheduler 1s one such process which might be especially
'nterested in such focusing factors, as will be described below,
The use of the various ratings a. attention focusing factors
allows Hustt to perform goal-directed scheduling, which 1s pro-ess
scheduling so as to achieve "optimal” recogmition etficiency. The
thrust of goal-directed scheduling is that, while there may be
many processes ready to rur and work on various parts of the
search lree, one should first schedule those processes which can
best help to achieve the goal of utterance recognition. Notice that
such search-tree pruning lechnigues as the alpha-beta procedure
(which 1s essentially a sequential algorithm anyway) do not apply
to HSHt’'s non-game search trees, which do not have the constraint
that alternating levels of the tree represent the moves of an
opponent,

Goal-directed scheduling may be viewed as having two
separate functions: 1) using the ratings and attention focusing
factors associated with the global data base components to
schedule knowledge-source processes which have been invoked
(readied for execution) in response to previous events delected in
the global data base, and 2) using these same attention focusirg
factors to detect important areas in the global data base which
require further work, and invoking precondition evalyators as soon
as possible to instantiate new knowledge-source procecses to
work n those important areas. Thus, the attention focusing
factors within the global data base serve to schedule both
knowledge -source processes and precond:tion evaluators.

A knowledge-source process nught be scheduled for
execution because 1t possesses the only processing capability
avallable to be applied to an important unexplored area of the
data hase. However, if there are many such processes ready to
execute, the scheduler can perform a type of means-ends analysis
in which those knowledge-source processes are s heduled whict
are hkely 1o produce data hase changes v which the system -
currently interested (such interest bemg noted by high attentior
focusing factors in a given change set). For example, if the data
base contains fccusing factors which highiight activity 1in a time
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region in which there are no structurat connections between two
sdjoining levels, the scheduler would probably give a higher
priority to a knowledge-soiice process which will attempt (as
indicated in its external specifications) to make such a connection
than to a knowtedge-source process which 1s hkely merely to
peri.*m a minor refinement on the ratings in one of the levels.

Another means of effecting goal-directed scheduting relates
to the attention focusing factors associated with various time
regions of the ut'erance (such focusing factors reaching across all
the information levels of the global data base). Using these time
region focusing factors, one can schedule knowledge-source
processes which can contribute in a particular time region, or
invoke precondition evaluators to instanhiat: some new
knowledge-source processes to work within the desired time
region.

SUMMARY, CURRENT STATUS, AND PLANS

In summary, HSLl 1s a system orgamzation for speech
understanding that permil. the representaton of speech
knowledge in terms of a large number of diverse knowledge
sources which cooperate via a generalized (in terms of both data
and control) form of the hypothesize-and-test paradigm.
Knowledge sources are independent and separable; they are
activated in a data-directed manner and execute acynchronously,
communicating information among themselves through a global data
base. This global data base, which 1s a representation of the
partial analysis of the utterance, is a three-dimensionat data
structure (in which the dimensions are tevel of representation,
time, and alternatives) augmented by AND/OR structurat
relationships which interconnect elements of the data structure.
This giobal data base structure permits information generated by
one knowtedge source to be: 1) retained for use by other
knowledge sources, and 2) quickly propagated to other relevant
parts of the data base. In addition to being a new
representationat framework for specifying speech knowlege, HSII
is a system organization suitable for efficient implementation on a
multiprocessor computer system. In particular, the system
organization employs techniques which, while not violating the
independence and modularity of knowtedge sources, permits: 1)
avoidance of ueadlock in the rJata base, 2) efficient implementation
of data-directed sequencing of knowtedge sources, and 3} goal-
directed schedidirg ot asynchronously executable knowledge-
source processes.

A preliminary, synchronous version of HSIl has been
operating on CMU's PDP-10 since January, 1974. The fully
2cynchronous, mutt:process version of HSIl s now in the firat
stages of being implemented, also on the PDP-10, and is expected
to be running by May, 1974. This multiprocess version of HSI1l will
also contain the capability of simutating the effect of operating
HSIl in a multiprocessor enwironment. Experience with this
multiprocess version of HSH, tczether with simulation data on the
effects of operating in a multiprocessor environment, wtil form the
basis for a multiprocessor version of HSIl on C.mmp. An initiat
implementation of HSIl on C.mmp is expected to te completed in
the first quarter of (975,
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THE DRAGON SYSTEM-- AN OVERVIEW

Jares K. Baker
Computer Science Department

Carnegie-Melloy University
Pittsburs h, Pa.

ABSTRACT

This paper briefly describes the major features of the
DRAGON speech understanding system. DRAGON makes
systematic use of a general abstract model to repesent each of
the knowledge sources necessary for automati- recogrition of
continuous speech. The model--that of a probabilistic function
of a Markov process--is very flexibe and leads to features
which allow DRAGON to function despile high error rates from
individual knowledge sources. Repeated use of a simple
abstract model produces a system which i1s simple in structure,
but powerful in capabilities.

INTRODUCTION

To achieve reliable speech recognition it 1s necessary
to combine information from a variety of sources([4)). In
addition to the cirect acoustic information, valuable sources
include the vorabulary, the grammar, and the semantics o, the
utterance. Extracting the information from eacih of these
sources of knowledge 15 a difficult task and the need to
coordinate the various pieces of information makes the task
cven more dithicult. For the DRAGON system a general
theoretical model has been adapted to represent each of the
important sources of knowledge. The sources of anowledge
are organized into a hierarchical system such that the
integrated system i1s again an instance of the same general
model. The availability of this general theretical framework
has greatly simpli‘ied the DRAGON speech understanding
system.

The general model which 1s used throughout the
ORAGON system 1s that of a probabilistic function of a Markov
process({2])). In this model there are two sequences of random
variables X(1), X(2), X(3), ..., X(T), and Y(I), ¥(2), Y(3), ... , Y(T).
The X’s correspond to internal stales which are not observed
and the Y's correspond to external observations whose
distributions depend on the values of the X's. For example,
the X's could represent the sequence of phones In an
utteranc: and the Y's could represent the sequence of acoustic
measurements. Alternatizely, the X’s could be the sequence of
words 1n an utterance and the Y's could represent the
sequence of phones and modifiers as the words are actually
pronounced. Changing ,“¢ frame of reference again, the Y's
could represent the words of the utterance and the X’s could
represent the underlying sequence of syntactic-semantic
states.

Features of the DRAGON System

The major features of the DRAGON system are
(1) Delayed decisions

(2) Generative form of model

(3) Herarchical system

(4) Integraled representation

(5) General theoretical framework
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The various sources of knowledge are organized into a
hierarchy of probabilistic functions of Markov processes. A
network is constructed to provide an integ: ated representation
of the hierarchy. Recognition of an utterance corresponds to
finding an optimum path through the network. The optimum
path 1s found by an algori'hm which, in eflect, explores all
possible paths in parallel([]]).

Delayed Decisions

In teyms of the network representation, most speech
recognition algorithms search for a suboptimum path though
the network. A globally optimum palh woulo cleariy be
superior, but with most models it 1s prohibitively expense to
compute. The Markov model of the DRAGON system permits
such a globally optimum path to be found by an algorithm such
that the number of computatons 1s linear in the length of the
utlerance.

The Markov assumption is a prescription to include “all
relevant cortext” in formulating the state space of the process.
By cons.dering at each point in time all pussible internal states,
the algorithm searchs all possible paths through the network.
By combining paths when and only when tney come to the
same state at the same time, all decisions are delayea until the
full effect of ali context, past and future, has been considered.

Generative Form of Model

By having an external sequence (Y) depend
probabihstically on un unobserved internal sequence (X), the
system allows knowledge sources to be represented In a
generative form([6])). Given the sequence of syntactic-
semantic states one can generate the words. Given the words
One can generate the phones. Given the sequence of phones
one can generate the sequence of acoustic observations. But, .
computationally, this hierarchy of conditional prohabilities can
be reversed by applying Bayes' theorem. In analyzing a
specific  utterance one can proceed from the known
ohservations to the internal states which must be inferred.

dierarchical System

The sources of knowledge are organized into a
hierarchy based on the following observation: The "top” levels
of a speech recognition system change state less froquently
than the "bottom” levels. Thus a single syntactic-semantic
state corresponds to a sequence of . cveral words; a sngle
word corresponds to a sequence of -everal phones; and a
phone corre:ponds to a sequence of several acoustic events.
The hierarchy 1s not absolute--for example, syntax and
semantics are mixed together into a single mult:-level process-
-but it provides a convenient means for combining the Markov
processes which represent the individual sources of
knowledge.

Integrated Representation

A nelwork 1s constructed which represents the tfotal
hierarchy of Markov processes. The process as a whoie fits
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the same general model as the piecas--it 1s a probabihsh
function of a Markov process. All of lhe “knowledge” of the
system is represented in a par of simple data structures: the
transition matrix of the network and the tabi of conditional
probabilities  conrecting internal  states to exterral
obecervations. The main program of the system s based on the
general model of a probabilistic function of a Markov process.
All speech-specific knowledge is represented in the data
structures, not in the program.

General Theorelical Framework

Having a general theoretical structure greatiy simplifies
the speech recognition system. It 1s both easier tn implement
and easier 1o understand. Its operations can be expressed
exphaitly by a simple set of mathematical equations. A
powerful gener | system is constructed by repeated use of a
flexible theoretical model.

Potential Problems and Disadvaniages

Delayed decisions--searching al possible paths through
the network--could lead 1o a combir itorial explosion in the
number of computations, The Maixov model completely
prevents this combinatorial explosion. Aiternate paths are
recombined at exactly the same rate that new branches are
formed. The total number of camputations is linear in the
length of the utterance.

The integrated representation of a hierarchical sysiem
could result 1n an excessively large state space. Care must be
exercised as to what context must be included and what can
be safely ignored. Experience indicates, however, that the
network reprisentation is a compact and powertul
representzi.un and speech recognition tasks with large
vocabularies ¢an be accomodated.

Representing all knowiedge as conditional probabilities
does not imply any loss of power, since the probabilities can
be sel to zero or lo one whenever appropriale. However, it
does reqguire that estimales be computed for all the
probabilities in the system. Fortunaiely, all thase probabilities
are easlly estimated from the frequency of occurrence of
carresponding events in a set of training utterances.

General Model

Let the sequence X(1), X(2), X(3), ... , X(T) be the
sequence of states of a Markov process ([3]) with transition
matrix A = ( a,). Let Y(1), Y(2), ¥(3), .., Y(T) be a sequerxe
of random variables such that, for all 1, PROB( Y(t)=k | X(1-1)=,
X(t)=} ) = b ,.. Ure a bracket and colon notation to abbreviate
sequences. Thus X[1:T] = X(1), X(2), X(3), ... , X(T) and Y[1:T]
= Y{1), Y(2), Y(3), ... , Y(T). The assumptions of the model are
that

PROB( Y(t)=y(t) | X[1:t]=x[1:t], Y(ia-1)=y[it-11) (D)

= PROB( Y(1)=y(1) | X(1-1)=x(t-1), X(1)=x(1) )

= b namey
and

PROB( X(1)=x(t) | X[ 1:4-1]=x[1:-1]) (2
= PROB( X(1)=x(t) | X(t-D)=x(t-1))

= Ay nan

Under these assumptions,
PROB( X[ 1:T)=x[1:T], Y[1:T]=y[1:T] )} (3)
=T A o enDare 11yt
where a specaial extra state x(0) 1s introduced and a.o and
b.oy,. are defined appropriately.
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it 1s convenient 10 introduce a special notation for the
total probabiity of all partial sequecnes resulting in 3
particular state at a particular time. Let

o (s,)) = PROB( X(s)=), Y[1:s]=y[l:s]) (3)

= Z.- . 1’“-- By -.'lb-ﬂ )yt

where the tum 1s ovar all possible sequences x[l:s-1] and
x(s)=). The values of « for a given s can easily be computed
from the vaiues for s-1. In ‘act,

wls,)) = Lot(s-1,2 b 0 (5)

Conditiona: probabilities based on the known sequerce
y[1:T] can be compuled from the function o and a similar
function compu'ed backwards in time from the end of the
sequence. For :xample,

PROB( )(T)=y | Y[1:T]=y[1:T]) (6)
= PROB( X(T)=) Y{1:T)=y[1:T)) / PROB( Y[1:T]}=y[1:T])
= «(T,)) [ Tl )
Each of the sources of knowledge needed for speech
recognition ca1 be represenied with this general Markov
framework.

Representation of Knowledge Sources

There are several choices in how to represent
acoustic-phonetic knowledge. A cecision must be made
whether acoustic observations sh..uld be preprocessed by
specialized procedures or whether t ¢ stochastic model should
deal directly with the acoustic parameters. To simplify the
exposition, consider just the case in which spec.alized
preprocessing i1s done.

Assume that at each time t (l1st<T), an acoustic
observation is made. Eact. such observation consists of a
vector of values of a set of acoustic parameters, which in the
stochastic model is represented by a vector-valued random
variable Y(1}. There is a sequence of phones P[1:J] which is
produced during the time interval 1 <1< T. Assume that the
phones uccupy disjoint segments of time that is, assume there
is a sequence o< s, < §; €53 <. <s, such that P()) lasts from
observation Y(s,,) through observation Y(s-1). (Sel so =1,
s, « T.).

Let p[l:J]) be the actual sequence of phones in an
utterance and let y[1:T] be the actual observed sequence of
acoustic parameters. For convenience, also introduce a special
initialization phone p(0) which I1s assigned a special value to
allow the initial probabilities to have the same form as the
transition probabilities later in the sequence. Since the actual
{imes $,,52,51...5,1 are not known, it 1s necessary 1o associate
each arbitrary segment of time with some phone. For any par
of times t, and t, let S(1,1,) be that value of ) for which the
expression (Min(s t;)-Max(s, ,1\)) is maximized. 1f t,<] then
set S(t],t;) = 0.

The acoustic preprocessor tries to estimale a phonetic
transcription from the azoustics alone. By looking for
discontinuities or rapid changes in the acoustic parameters, the
preprocessor divides |he sequence Y[1.T] up into K phone-like
segments Y{1:t,-1], Y[t t-1), Y[tt-1] | Y[t tJ Then an
attempl is made to classify each segment Y[t ;:t.-1] using some
form of pattern recogmition procedure. Let 1 <1, <t <. <ty
be the segment boundary times as decded by the
preprocessor and introdu-e the random variable D(t) which s
1 if there exists a k such that 1. =t andis O otherwise.
Let F(k) uc the label assigned by the preprocessor to Ihe
segment Y[t :1.-1] (For completeness, set t.=t.=] for k<O,
and t,=t,=T for k>K.}
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For come patterr matching procedures it 1s possible to
directly estunate conditional probabilities. When using s..h a
procedure, let

Blpk] = PROBIY[t t. iJ=y[t :t.-1]] P(S(t 0. )=p). (7)

The pattern matching procedure might yield only the label (k)
representing a best guess as to the underiying phone. In such
a case 1t 1s necessary to estimate the conditional probabiiities
fron. statistics of pertormance by the oattern matcher on
traiming aata. Let f[1:K] represent the actual secuence of
labels generated by the pattern recof,ruzer tor the utterance
being considered. Then set

Bp,k] = PROB(F(K)=f(k) | P(S(t, \,t.)=p), (8)

where the conditional probabiity s estimated by the
frequency of such events in a set of training utterances.

In addition to estimating the probability of substituitons
or confusions, it 15 necessary to estimate the probability of the
preprocessor produ.ing either too many or too few segments.
The probabiity ot such events may be estimated from their
trequency of occurence i a set ot t,aining uiterances. Let

Elp..p;n] = 9
PROB( D(t ;) <D(t. ,)=D(t.)=1, D[t ;+1:t, ,~1]=0, D[t. ,+1:t,-1]=0 |
PSSt N=p,, P(S(L W 1))=p,, SUE 0 )=S(E 58, )en ).

It tne acoustic prer-icessor is reliable, then E{r.,0,n] should
re small except to ne=] and should be neglgible tor n>2, In
the DRAGON system, 1t has arbitrarily been assumed that
Elp..,p,,n]=0 tor n>4. Note that Elp,p;0) 1s (Adefined and
meaningless uniess p,=p,.

We can now estimate the conditional probability ot the
sequence Y[1:T] given the sequence P[1:J]

PROB(Y[1:T]=y[1:T] | P[0:J}=p[0:J]) {10
= LT Bp(z(k))KIE[p(2(k-1)),p(z(K)),n(k)],

where z(k) = £ | n(1) and the sum i1s taken over all sequences
n[1:K] suchh that z(+)=J. (By convention z(0)=0).

in order to apply the theory of a probabilistic function
of a Markov process. it 1s necessary to specity the transition
probabilities tor the phone sequence F[1:J]. It 1s the task of
the other sources ot knowledge to specify these probabilities.
Phonological rules may be represented either directly or
indirectly in the estimates of Elp.psn] and Blpk], but all
higher levels of the hierarchy deal only with the sequence
P[1:J] and are insolated from the acoustics Y[1:T] or the labels
Fl1:X].

Representaticn of Lexical Knowledge

This  section discustes the computation ot the
concitional  probability  PROB(P[1:J]=p[t:J] | W[1:1]=w(t:1])
where W[1:1] 15 the cequence of v.u ds in the ulterance and
P[1:J] 15 the sequence ot phones. Knowledge of the sequecne
of words in an utterance 1s such a strong determiner of the
sequence of phones that it 1s unusual to formulate the
conrection as a stocastic process. Nevertheless, the stochastic
tormulation can represent the same rules as other formulations
and 1n a compact and computationally convenient form.

Let’s tirst consider how alternate pronunciations of a
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partic,lar word can be rapresented by a probability network.
As an example, take the word “alway.” as used in the ARCS
(Automatic Pecognition of Continuou Speech, 1BM-Rockwell)
systeni[9](®]). There are 432 pronunciations which are
allowed. The ARCS system can have such a compiete list of
phonetic variants because it L es a network representation of
the alternatives and constraints, Some soeech understanding
systems use an explicit list of alternate poOnunciations, either
generated automatically from a phenemic  dictionary  or
preselected by hand. But an easy way o represent an
exhaustive list of alternate pronunciations 1s by a network.
The network representation tor "always” 1s

ALWAYS:
IO OR W2 AR
"é‘ﬂ-\@}'p " -@ -ql.-h\ @z‘j -k‘_. a
© @

where ti.e dots (.) are dummy nodes Introduced so that
the network can be shown in two dimensions. We have
represented the phones as nodes rather than as arcs (which
would be even more compact) because such a representation
fits more easily into the integrated system. The node-based
representation permits explicit representation of sequential
constraints (such as the restriction that it /u/ 1s omitted, then
the tollowing vowel cannot also be omitted).

The network representing alternate pronunciations of a
given word can either be derived by hand and stored in a
dictionary ot word networks, or can be derived by autematic
procedures. The automatic procedures take a canonical
pronunciation and apply phonological rules to produce a
network represanting all likely pronunriations of the word.
Even 1t aiternate pronunciations of words are no! derived by
rule, the phonological rules are still important because many of
them can apply across word boundaries.

The process of appiying phonological rules is one way
in which the DRAGON system deviates trom the conceptual
hierarchy. The syntax and semantics ot a particular task is
represented by a network in which each node corresponds to
a word. Using either a dictionary ot canonical pronunciations
or a word-network dictionary, a small network 1s substituted
for each word-node. The result 1s a network in which each
node 1s an individual phone. Tne phonological rules are then
repeatedly applied to the network. For each phonolcgical rule
the entire network 1s searched to tind any nodes which satisty
the context conditions of the rule. Each rule provides an
alternate pronunciation of some seguence ol phones. If the
alternate pronunciation 1s not already represented then an
extra branch s created in the network representing the
sequence ot phones tor tlre alternate pronunciation. This
process apphes across word boundaries as well as within
words, depending on the phonological rule. Conditionai
probabiities tor the dfferent branches ot the phonetic
network are estimated trom trequency ot occurence statistics
tor a set ot hand transcribed sentences. Such probabiities
could even be made dialect dependent or even talker
dependent. Note that the traiming centences only need to be
phonetically tran<cribed, it 1s not necessary to know the time
at which each phone occurs since at this level we are no
longer dealing directly with acoustics.
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The explicit representation of phonological rules in the
network s easily achieved at an expense of doubling or
triphing the number of nooes in the network. However, with
this  stochastic network model 1t is not essential that an
exhaustive set of phonological rules be used In tact,
implementations of the DRAGON system have been made with
no explait  phonological rules  and only one canonical
pPronunciation for each word. The reason that this
representation s nosaible 15 that any phonological phenomena
which are not introduced explicitly will pe treated at the
acoustic-phonetic level. Thys phonological substitutions can be
mimiced by adjusting the probabilities in the matrix B{p,k] to
include the probabiiity that p 's not the actual phone used by
the taiher but -ather that some other phone q 1s spoken.
Similariy, phonoiogical insertions and deletions can te treated
By adjusting the probabilities in the matrix Elp..p;n) The
disadvantage of this approach s that the matrices B and E
represent less context than g avalable in the exphcit
representauon of the phonological rules,

There 1 a serendpitous benefit n using the matrices B
and E to represent acoustic-phonetic knowlegge independently
from the representation of the phonolcgical rules. [t the
matrices B8 and £ are estimated by running the acoustic
Preprocessor 0.4 a collection of test utterances, then any
phonological rules which are left out in the prepared labeling
ot the test ytterances are automatically absorbed into the
estimates ot B and E.  Thus a pertect hand-labeled
transcription of the test utterances 1s not only unnecessary,
but undesirable. The best labeling for training purposes 1s an
automatically generated labeling trom a procedure knowing the
sequence of words and having exactly the same lexical

knowledge and phonoiogical rules as the speech ungerstanding
system,

Bepresentation of Syntaclic and Semariic Knowledge

The <yntax and cemantics ot a specitic task domarmn can
be represented by a multi-level network corresponding to a
Markov process. Consider as a task a spoken chess move.
Chess has a specialized grammar as well as a specialized
vocabulary([5][7)). Leaving aside a tew special moves, a move
can be represented by a path through the foilowing network:

O@
.

(=]
\

\O)

Bl
/
[]

oAl

@

The nodes n the above network are not in general
ndividual words, but are subgrammars which are themselves
represented by networks. For example:
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PIECE:

Again, the nodes can be expanded as networks:

NON-ROYAL:

ROYAL:

It 1s c'ear that any regutar (finte state) grammar can
be represented by a tinte network. But In a speecn
understanding system the distinction between 3 regular
grammar and an arbitrary context-dependent grammar is
somewhat artiticial.  Consider the lanquage of utlerances
generated by a particular grammar, nc: the sequence ot words
but the sequence ot acoustic events It 1s not unreasonable to
assume, for example, that each eniry in B[ph] 1s non-zero,
although perhaps very small. Such a result would
automaticalty be the case, for example, 1f the conditinnal
probability distributions tor the acoustic parameters are multi-
variate normal distributions.

But 1t each entry in Blpk, 1s non-zero, then at the
acoustic level the language must include all possible sequences.
Such a language can, ot course, be represented by a tinte
network grammar. Thus the issue becomes not ore of
generating the proper language, but rather one ot modeling as
accurately as possible the conditional probabilities, which can
be _.ontext-dependent even for a cortext-tree grammar.
Context 15 represented in the network by having separate
nodes tor subgrammars which differ only with respect to
context. For example, in the chess grammar there are two
nodes marknd “"piece,” one describing the piece which 15
moving and one describing a piece which 1s captured. There s
clearly a trade off between t»e size of the state space and the
amount of context which can be represented. For specialized
tasks 1t 1s not difticult to achieve a reasonable representation
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of the grammar using most words at no more than two or
three nodes. The transition probabiities for the grammar
network can be estimated frnm statistics for a set of training
sentences. A large set of training sentences <hould be used,
but they only need to be transcribed orthographically, not
phonetically, at thic level of the hierarchy. If Bayesian
statistics are used, the a priori probabihties could be set to
achieve the same effect as a non-probabilistic use of the
grammar. The a posteriori probabil fies would then be a strict
improvement (as judged by the training sentences).

To the extent to which the stahistirs of the training
sentences reflect the true probab.lities for spontaneous
utterances for the cpecific task, the probabiity network
represents not only the syntax of the task but also all of the
recogrnition information which can be obtaned from the
semantics of the avalable context. That s, assuming the
probabilities are correct, the probability network 1s an optimal
predictor for a given amount of context, and therefsre predicts
at least as well as a human who 1s given the same amount of
context and who presumably understands the sentence
{aithough thr context in this case 1s not tie whole sentence).

Inter-centence semantics can also be introduced into
the probability network. One way to use inter-sentence
semantics 1s to employ a user model. Suppose there is a model
for the user in a particular task which gives probabilities for
the user transitioning among a finite number of states
depending on the types of utterances which the user has made
in the past. Conceptually this mode! fits in easily as an extra
level in the Markov hierarchy. Computationally it requires that
conditional probabiities be estimated separately for each user
state. However, since the user transitions between states only
between utterances, a given utterance 1s analyzed using only a
single representation of the probability network. The
probablilities 1n this single network are weighted averages of
the probabilities for the various user states. A user mode! is
especially valuable if certain key sentences trigger user state
transitions with probabiity one and if for each user state a
small subset of the general grammar 1s used. Then there is a
savings in both computation and storage requirements

BERFORMANGE RESULTS

The testing of the system is stili at too preliminary a
stage to make any definitive conclusions, but initial results are
very promicing. Simulation studies have shown that the
cystem can perform well despite a high error rate in the
acoustic preprocessor. Inits first test with live speech input,
the system correctly recogrized every word in all mine
sentences 1n the test,
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LBSTRACT

Simple schemes are presented tor segmenting and
labeling continuous speech which a*e independent ot the acoustic
parameters used as input. Central to this approach is the belief
that simple, parameter-independent structure 1s desirable at this
level of speech recognition: 1) tor comparisons emong the various
parametric representations for speech, 2) to provide a benchmark
for any other scheme purporting to be befter in either
segmentation or labeling, 3) 10 avoid encoding in the algorilhms the
limitations ol a representation, 4) to allow for more automatic
traming and adjustment, and 5) 1o study schemes that permit
etficient hardware realizatinn,

The segmenter 1s based upon the idea that signit:cant
change in a parameter should be sutficient evidence tor 2 boundary,
and that this evidence can be collected and viewed as a sum ot
weighted votes. A iwo-stage threshold network collects the vote
sum and locates boundaries at local maxima in the sum, thus
allowing context to have an eftect.

The labeler takes a well accepted viewpoint from pattern
classitication research -- that distance in the space of acoustic
parameters is strongly related to stmiarity in acoustic nature.

Three sets of acoustic parameters are used as irput to
the two procedures: amplitude and zero-crossing cour.s from
octave band-pass titers (ZCC), smoothed LPC derived spectrum
en -elopes (SPG), and the frequercies and amplitudes of the first
tive peaks in the SPG (FIT). A straghtforward training process is
urdergone tor each parametric representation. Results are
presented tor a sel ot utterances spoken by the same speaker as
the training corpus. The results ottained compare with human
performance in segmenting and labeling with no syntactic or
semartic support.

INTRODUCTION

Attempts at computer recognition of continuous speecn
have clearly pointed out the need tor methods tor diiding the
speech signal into discrete acoustic segments and for labeling those
segments in as accurate and robust a manner as possible. A
number of specitic methods tor segmenting based upon particular
acoustic parameters have been proposed. (see for example, Fant6 |,
Reddy 66, Nenes68, Broad72) We believe that simple 1initorm kinds
ot aigorithm. may be applied to the problem ot segmentation and
labeling ot continuous speech in a manner independent ot tke choice
ot parametric representation ot the speech signal. Although they
may, doubtless, be improved by application ot specitic knowledge
about the response ot the parameters to particular speech
phenomena, this knowtedge has not yet been coditied, ¢r even
aquired in sufticient breadth to support comparisons among tie
representations. The possible variations upon the methods fcr
extracting parameters trom the acoustic signal are endless, so % s
imperative that a reasonably eftective way ot employing any such
representation be tound.

(1) This research wac supporteu in part by the Advanced Research
Projects Agency ot the Drpartment ot Defense under contract no.
F44620-73-C-0074 and monitored by the Air Force Otfice ot
Scientitic Research
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We will propose two Luch algorithms as benchmarks. We
do not expect them to perforri as well as more Feuristic methods
with signiticant amounts ot sp:ech knowledge, but they will provide
as good an input to the higner levels ot speech recognition as 15
tound i1 many earlier systems and may be used as ar. otf-the-shelt
packaye. In addition, any riethod that proposes to advance the state
ot the art should do sign:ticantly better than these schemes.

There can be strong interaction between the segmenter
and labeler. Information about segmen' identities may be used ™
vernity or correct boundaries, on the otlier hanc, the assoc:ation  t
the input within a segment as all contributing to a single sour
provides exira information to the labeling pracess. In the over#)
recognition system, these two processes combine to torm a sourc
ot knowledge that transtorms the acoustic signal into a sequence
discrete segmental phonetic dentitiers. Later processing by highe
levels may transtorm that sequence, correct 1t by applying rules
phonetic context, or even go back to the acoustic input in condi‘io
that warrant more caretul bul expensive analysis. Primarily, w'
must deal with this level as a cata reduction and transformation
process.

Furm ot the Problem and Previous Methods

Most methods for analyzing the acoustic signal result in a
vector of parameters at regular inlervals in time. (1) The elemen's
of this vectar may be considered as rieasurements ot teatures or as
parts of an overall descriptor ot the acoustic staic of the signal. A
great deal ot etlort has gone into the search tor a set ot such
parametric measurenents that display usetul properties -- complete
intormation  (as veriied by human perception experiments),
orthogonality (or independence -- for better data compaction),
independence of variations in  speaker and equipment
characteristics, etc. It was hcped that such parametric
representations would lend themseives to Ihe least errortul possible
labeling of the phonetic content ot the signal.

We are concerned here with the actual use ot these
parametric representations ot the signal. We have a number ot
goals other than that ol improving accuracy. They stem directly
trom deliciencies we teel are present in the current approaches at
this leve;. Previous approaches have been ad hoc in therr
development. Typically, a representation is studied for its acoustic
properties and the intormation obtained 1s coditied in specialized
rules. Even application of standard pattern classification methods is
adapted to the particular pattern space by heuristic selection of
weights and o! classes based upon the strengths and limitations ot
the representation. Thus, there 1« no clear distinction between the
etticacy of an algorithm tor labeling or segmenting and that ot the
particular acoustic paranm=ters.

1) There are rarely any comparative studies availaole
because o! the oependence of each system upon a prior
assumptions. We wouid like to be able to perform comparisons
among the paranetric representations, the resuits of which we are

(1) We also adopt the convention of vectors al umtorm intervals.
However, other methads (Baker 74) show promise precisely because
they do not average mca<urements over short time intervals, but
rather measure specific events in time and the intervals between
them.
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confident can be extended to more heuristically coded production
versions of the segmentation ano labeling processes.

2) We would lke to present a benchmark to the
community, with enough performance capability to support a
reasonable recogmtion systemn, but which must be surpassed if the
cther goals discussed here are sacqiticed.

3) Many sets of parameters are correlated in well
understood ways with one another, such as amplitude measurements
in filter bands. In dealing with filter arrays, for example, one otten
implicitly encodes 11e concept of closeness in trequency with
closeness in the array. We do not want to encode the structure,
and the limitatiors, 0/ a particular parametric representation into
the algurithms uniess we are satisfied that the advantages ot doing
so outweigh the loss of generality and tlexibility. While there is
nothing wrong 2nd much to be ganed in using this information --
the best systems will have to, we would lke to have some
contidence in our choice of parametric representation betore we do
s0.

4) As well as comparative rating of parametr.c
representations and benchmarks, there 1s also a need for methods
that are straighttorwaro in structure and implementation. Available
sthemes tor unsupervised learning and for tracking of siowly or
infrequently shifting clusters in the pattern space depend tor their
success upon an uncomplicated model of pattern classes and
uniform treatment of the dimensions of the pattern space.

8) Such aigorithms are more easilv realized in hardware,
with the consequent speedup so available. Since the algorithms are
designed to be independent of the particular acoustic parameters,
fixing them in hardware will not be as big a risk as one might think.

Other problems arise in dealing with variations introduced
by itferent speaker and equipment characteristics, or itterent
vocabularies and hence phonetic rortexts. Their etfects, while
sigmficant to the operation of a complete speech recognition
system, are secondary in this con'ext. We expect that the results
obtained over uniform, high-quali'y data, with the simple algorithms
we are propos.ng here, will d:grade gracetully with the introduction
of other sources of variation and noice into the data.

SEGMENTATION

The first process we would like to app:v to the input data
1s 10 segment it in time into related acoustic segments. This is often
done at a later stage, after some labeling, or at least recognition of
features sucn as “voiced”, “fricated”, or “silence” has been
attempted at srall regular intervals, However, our approach is to
atlempt the segrentation nitially, In order to have that
segmentation as useful input to the labeling process. If we err in
favor ot too many boundaries, we may always combine segments
with similar labels, once those labels are placed.

Evidence tor Segment Raundary

Clearly, the concept of acoustic simlarity and difference
1s central to any segmentation procedure(l) Thus, one might,
instead of labeling each interval, label the interstices between the
intervais, 1.e. measure the difference, according to some classifying
rule, betveer adjacent intervals. Tne distance, in some parameter
space tor example, between {he pattern associated with a noise-like
interval (fricstive) and that of a nasal-like interval would be great
enough to signai the placement of a boundary, while the distance

(1) If each intervas 1s labeled a. some acoustic type, the grouping
together of strings of these latels, as 15 often done, accor-.ng to
higher or broader type classification 1s just an assertion that
boundaries should occur ‘where adjacent intervals belong to very
difterent acoustic types.
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ber veen palterns for high and middie vowei-lIike scunds might not
and orobably should not. There is definitly an element of risk in
adopting such a decision strategy -- that imporiant boundaries will
be missed because:

1) the distance measurement 1s not sensitive to change

in certain directions in the acoustic space,

2) the parameters do not reflect such changes,

3) the change 1s too slow,

or 4) the magritudes of the changes vary considerably

witn context,
and thus not be susceptible to easy decision rules. Problems | and
2 will bother any segmentation procedure, and must be solved by
choosing better parametric representations for speech. The problem
ot slow change, 3, will also plague many difterent algorithms. It is a
oeculiarity of speech that must be dealt with, Problem 4, varying
magnitude of change, can be approached farly simply by treating
the change as a signal in time. We wil! show one possible approach.

The rule we have chosen is based upon the idea that
each parameter of the speech signal can be viewed as a separate
channet of time varying information about the utterance. (Figure 1)
A sudden or s gnificant change in even a few channels should signal
a boundary Thus we may collect evidence about the placement of
boundaries by placing a threshold on the change in each channel,
and report when the threshold s exceeded over adjacent time
interval ditterences. Because we expect some changes to occur
gradually, we measure the change between intervals one unit
further away (a total of three units) as we!l and allow them to react
to another set ot thresholds.
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Figure 1 -- Segmenter Voting

A second stage is needed to ombine these votes for
change ot the individual threshold units. It this were a Perceptron
recogn.zer, this second stage would not have memory and could not
take context in time into account except as it was explicitly
raeasured by a weighted combination of the primary stage units.
However, this will not work when changes vary in magnitude and
the number of channels atfected. The acoustic context greatly
aftects the suddenness and severity of a bouncary. There i1s no
threshold that can be used on the vote sum, for example, an overall
vote level that specfied change from ‘ricative to vowel would be
too large to work for silence-nasal transitions where only a few
parameters may change. The situation we wish to recognize 1s that,
whatever change does occur, »* - greatest at the point we wish ‘o
mark. Thus a local maximum 1s found in the sum of the threshold un:t
votes. These votes are weighted to emphasize the adjacent interval
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aitferences over tne longer slower changes. However, the actual
differences are not summed. Rather, a vote tor change 1s considered
to be ot equal importance trom any channel if 1t triggers over that
channei’s threshola.

Transition Segments

The local search tor maxima can also incorporate a
measurment of c'Coe or area to try to chara‘terize the gradualness
of change. Broader peaks in the vote sum wil indicate transitionary
portians of the signal which are changing acoustically over a longer
time than usual. We have had some succes ir distinguishing such
segments by measur:ng the width ot the vote sum at a given drop
below each peak. |f the widih exceeds scme preset limit, the peak 1s
considered tc represent, not a boundary, but a ‘rarsitionary
segment and ‘s marrad accordingly (1) Difticulties occur because:
NSome such segments”are transitionary only in one channel or oniy
slightly as compared to the entire signal. Hence the vote sum itself
1s very low and the width measurement 15 cc nfused by noise ettects
from other channeis. 1) Noise n the signal or parameter
measurements may give the effect of transitionary segments by
masking a sharp change. While the method described here has not
yielded what we would consider good identitication of transitionary
segments, it ha, improved the loc.tion of boundaries. This suggests
that we may not have a clear ides of what kind of phenomenon we
mean by "transi‘ion.” (See Figurr ¢ for some examples.)
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Figure 2 -- Vote Sum Peak and Transition Locauvon

Traiming

Finally, we must specity the threshold values to be used
for the primary stage voting. These wiil, of recessity, depend upon
the parametric representation chosen, but will depend in a uniform
manner upon it. By umitorm we imply that a standard procedure for
training will be sufticient and may be applied without a great deal
of knowledge abou! the parameter space. We have obtained good
results by celling all the primary stage thresholds to the same
value. The resuits then depend upon ‘that one value and a
significance threshold used for ignoring small peaks in the vote sum.
The other parameters of 'he process are 'he weights of the
threshold unt votes. We have arg ‘ed that they ought to be the sam
over al channels, and have fixed them at two and one for the one
and three interval ditfterences respectively. However, the relative

(1} Other atltempts have treated every boundary as a (possibly)
short transition segment. (Reddy66)
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importance ot the channels may be learned from the training data
fairly easily. These few parameters form a small set of values
through which one may search with a corpus of hand marked data.

A rmore direct method for learning the *hresholds i1s to
collect the values of the differences at hard marked boundaries on
a traning set of utterances. At each boundary, the largest
difterence for each time span (1 or 3 tor example) 1s cocnsidered
relevent and s used to force the threshold down to its value. A
preliminary loot at histograms ot these o:fferences (Figure 3) will
show a level below whrich one should ignore the boundary as
spurious. (Often, hand labeled boundaries do not occur at points of
any acoustic change, but represent the segmenter’s idea of a
phonemic boundary.) The resultant thresholds should be able to
recognize at least all the non-spurious hand marked boundaries, and
probably will mark more. This tendency towards to many boundaries
15, we feel, the least of many evils. The frequencies with which a
channel show the greatest change will give a good idea of relative
importance for voting weights, if they are desired.
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Figure 3 -- Histogram of Differences at Hand Marked Boundaries
2nd Formant Amphitude Parameter

LABELING

A great many algorithms have been proposed . labeling
a piece of acoustic data with its phonetic type. .l.,,ough this
problem seems to fit directly into the basic patter. classification
model, and although pattern classification research has developed
methods for a variety of situations, the general consensus has been
that these methods are not sutficiently powerful to solve the
speech recognition problem. We feel that this is a negative reaction
to initial failures. Even though the identification of phonemes by
uniform classification rules will probably not be accomplished --
there 1s no reasonable representation of the acoustic signal that
contains all the needed intormation about context, prosodics, and
coarticulation to allow classification at the phonemic level -- tre
methods developer for classifying vector patterns can be successful
it greater effort 1s spent in choosing the classitier, aquiring the
relevent statict:.s, and choosing the proper ctasses for speech.(1)

Distance in P:ttern Space

(C1e important way of viewing a patfern to be recognized
15 that it 1s represented by some pont in a space of possible
patterns, and central to that conceptualization i1s the notion that the
distance between two points in the pattern space relates to
similarity of the patterns represented by them. We have compared
a number of distance measures that are well known to pattern
classification research and have chosen a few simple distances that
essentially provide lhnear classifying boundaries in the patiern

(1) This last 1ssue involves a greater understanding ot the statistical
nature of the pattern space than i1s avalable. How do the clusters
relate to one another, what are the sigmiticant subclasses of a
phone, and how will the label be used in the rest of the recngnition
system?
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space. ihey are correlalio {the n-space angle), Euclidean cistance
ithe magnitude of the difference vector), and Euclidean distance in a
variance normalized space.(l) (See figure 4)
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Figure 4 -- Decision Boundaries

More compiex partitiuming of the pattern space can take
many forms. (Nagy63, Meisel72) Often some estimatior. of the
density funclion of the patterns within each class is made, then a
Bayes optimal rule 1s detined by thoosing the class with the
greatest a posteriorr probabiity. However, the computational
requirements of such a calculation, the difficulty of estimating the
densities 1n questien, and the fact that they will have to be easily
altered as conditions and speakers vary suggest that simpler
methods be used.

The algorithm in simply to compute the “distance”
between the unknown pattern and each of the clusters in turn. The
“lusters are defined by whatever statistics they may require, such
as the mean and slandard deviation of each element over the
training samples. Although this requires more computation than a
successive sphthing of the space into subsets of classes, it 1s more
tiexible and doas nol require a hierarchy of ¢lasses.

When the classes to be recognized are composed of
multiple sub-classes that are themselves more well defined (more
tigntly clustered in the pattern space), a good agproach 1s to form
partitions that separate the sub-classes and then combine them by
rule. This 1s sometimes called drawing a piece-wise boundary, and is
closely related to the nearesl-neghbor and Parzen window
methods.(2) There are well accepted hierarcical divisions of the
speech sounds that may be used to provide such a sub-division. We
have chosen to define simpie clusters that correspond to a set of
77 most significanl allophones of Enghsh(3) (Table §). These become
labels that may take on different acoustic and phonetic meaning as
t aining progresces -- they lose their phonemic meaning except that
we begin by collecting statistical information about these allophones
from a hand labeled corpus of data.

(1) The elemenls of the pattern vector are normalized by a weight
proportionai to the standard devialion of elements of the patterns
in the particular class in question.

(2) Ore level of the Stanford signature tables i1s devoted to building
up a piecewise descriptior: of the pattern cluster associated with a
phone class.

(3) Shocuey, L., Privale communication, January 1974,
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S (Silence)

B D G DY. Q (Silencz-like)

P T K F TH (Sofl fricative or burst)
\ DH 7 ZH (Voiced fricative)

HH WH S SH (Fricalive)

Y101 WIOt RIOT L1017 (Unvoiced glide)

Y w R L EL (Glide)

M N NX EM EN {Nasal)

Y H uw UH (Vowel -- neutral)

EH ER AX ow
AO AE AA
..... ] (Vowel -- velarized, nasa'iz .d, retroflexed)

Table 1 -- Phonetic Classes, Initial Definitions

The hand labeling process, of necessily, involves some interference
by the concept of phoneme, although we have attempted to label
sub-phonemically -- to label the separate sounds within a phoneme.
Once the initial statistics are gathered, training procedes by
applying the machine segmenter and labeler to the same ccrpus,
This provides a second sel of labeled data which may be used to
compute new statistics. In the case of Euclidean distance from the
cluster means, the process described can be shown to converge to
a minimum intra-cluster scatter, In any case, after a few iterations
the clusters have changed therr character and can no longer be
considered as allophones. They do, however, provide consistent
labeling of a wide variety of acoustic pheromena, and the phonetic
correlates of those labels can be seen in an inspection of the
training corpus and what class labels occur in various phonetic
contexts.

Multiple Labels - the Entire Segment and Classes for Labeling

To enable the labeler to use information from the
segmentalion, we keep an ordered list of the best few labels
(usually 5) for each time inlerval (each pattern vector) in a
segment’s center haif. These contribute to selection of the segment
labei by voting with a weight determined by their position in the
crdered list. We have had reasonable results from the weights,
5,4,., but there is clearly room here for application of better
information. An estimate of the a posteriori probability of the label
could be made trom the values returned by the distance measure,
for example. This voting scheme additionally provides an ordered
list of labels for the segment. We have chosen to output the entire
list for use in higher level analysis, since often the top two or three
labels are close in their scores. The rules for extracting phonetic
teat ires from these sets of labels are being developed as a source
of knowledge for the Hearsay II system at Carnegie-Mellon
Jniversity. (Lesser7d) The use of these labels becomes an
interesting problem. They clearly have acoustic meaning, since that
1s detined by the cluster statistics and the classifier rule -- i.e. by a
piece of the paltern space. However, the, have phonetic meaning as
well, because they are interpreted in the light of the phones (from
a hand labeled corpus) within which they occur. This acoustic-
phonetic correlalion can be quantified and modeled by the
frequencies of the abovementioned occurances. If the frequencies
are treated as probabilities that a label will be realized within a
segment corresponding to a particular phone, Bayes rule can be
used to estimate the a posteriori probability that the phone was
there. (1)

(1) 11 = has not yet produced good results -- possibly because the
nioers used to model the phone to label probabilities are not
very good An imporlant elemenl in the Bayes calc _.iation is the a
prior1 probability of each phone. This might be supplied by the
h:igher levels from analysis of sequences, hypotnesized words,
probable length of segments, etc.
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RESULTS aad CONCLUSIONS

The results obtained with the uniform algonthms we have
» resented should be considered in the light of their usef.uiness to a
larger system. ‘We recognize thal these methods are weak .n
comparison tu what hunans can do and to what we will need for
successtul recognition of continuous speech with relatively
unconstrained syntax and semaniics. However, Shockey and Reddy
(Shockey74) measured accuracy of phoneme identification by
humans  working from spectrograms, from waveforms, and
acoustically in foreign language utterances where no higher level
support was available. The results they obtained may put bounds on
our reasonabie expectations of machine recognizers. As one would
exprect, acoustic input provided a much better identification rate
than the graphical representation, which were about equal. Yet the
actual rates were approximately 307 (waveform or cpectrogram)
and 707 (acoustic) for a set of about 50 phonemes. This would
indicate a considerable reliance upon higher level processing is
necessary. Identification into about six, gross types occured with
rates of 807 and 957. We suggest that a machine recognizer at the
local classification level of a system wcuid be dc ~g well to provide
recogmtion in the 30/80 range until rore is iiade available about
the particular mecharisms that enable humans to process acoustic
information.

Table 2 summarizes the results of the algonithms on three

ditfferent pa-ametric representations for a corpus of five sentenc.s:

What 15 the average uranium lead ratio for the lunar samples?

Do anv samples contain troilite?

Who 1s the owner of utterance eight?

Where were you when we were all away?

We all heard a yellow lion roar.
The three representations were:

2CC -- 12 parameters, Amplitude and Zero-crossing count

from each of 5 octave filter bands and unfiltered

SPG -- 128 smoothed spectral envelope points from LPC

coefficients (Markel68)

FMT -- Formant frequencies and amplitudes from the SPG

envelope, 10 pa ameters
The labeling distance measure used was Euclidean distance
weighted by the variance. The segmenting thresholds were all
obtained by the training method discussed earlier. The utterances
were recorded under the same conditions and by the same male
speaker as the corpus of utterances used to gather statistics for
the labeler, to train the segmenter thresholds, and to refine the
cluster set. However, we have observered oniy a mild reduction in
accuracy when data rerorded by other male speakers is analyzed.

CC SPG FMT

Labeiing (percent correct)

Exact Label 14 32 8
Rough label 69 79 47
Segmenting (number - out of 134 hand marked segments)
Missing 13 3 6
Extra 59 138 112

Table 2 -- Resuits of Machine Segmenting and Labeling

Remarks: 1) The counts of missing and extr segment boundaries
are highly negatively correlated, thus the nigh number of extra
segments which SPG and FMT display explains their low missing
segment score. This was due primarily to poor training of the
tresholds. However, the extra segments were vsually labeled
properly and could easily be recombined.

2) The rough labe: score 15 the percentage identified into the
correct clacs of about 10 broad classes of speech sounds. This was
done to compare with the foreign language experiment refered to
above.
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Errors in Segmentation

Wc can separate segmentation errors into three tyres:
errors of extra cegments, miss.ng segments, and transition
indentification. The probabl. =ffect ol an error upon a speech
understanding system and, specifically, the labeling process, will
vary considerably with the type of error.

Extra segments -- We *ave biased the threshold tran:ng
towards thresholds that will produce loo many segment boundar:es.
These errors are rot very serious since, 1If o sequence of short
segments are labeled with similar label: that indicate a sustained-
type phonetic situation, then the segments may be combined and
the labels collected by a voting scheme similar to the one used to
cumbine individual intervals. The most common occurance of this
phenomenon s during silence segments. The other common situation
ts during gradually changing sustained segments, usually trailing off
into silence at the end of a phrase. These may also be detected by
the characteristic short segments with related labels.

Missing segments -- This 15 a more serious type of error
since it requires, for correction, that the rest of the system
hypothesize the existence of the missing segment. I addition, it
causes the labeler to combine information from two segments that
are acoustically similar, but do differ somewhat. Very often, the
errors that seem to be of this type are actually indications of a
case where a phoneme boundary “"exists” but no phoneiic change
occurs. Manual segmentations often contan such boundaries, and
we must relie upon the higher levels of analysis to postulate such
non-acoustic divisions of the utterance. Most of the significant
problems seem to occur at glide-vowel Jjunctures. This appears to
us to be the kind of problem that can be dealt with after some
imitial labeiing har occured. It we have located a sonorant segment
with glide and vowel characteristics, we may invoke a formant
tracker, or a specialized segmenter inhat understands the parameter
space as it relates to the classes in guestion. It may make
considerable demands upon system resources, because it is only
used when needed.

Transition identification -- It is reasonabl. to treat every
change from one sustaned segment to another as a transition
segment. We have attempted to 1dentify only those transitions which
occur for a significant length of time. Since this 1s a subjective
quality, there can be no absolute measurement of correctness, What
we have observed is that the transition finding process seems to
help in some cases where boundaries should be located at the
beginning or end of change rather than at the point of greatest
change, and 1t does not hurt in most other cases. Clearly, more
accurate transition dentification could be done using the labeler
output at a higher level in the system.

Errors in Labeling

The errors encountered in our attempt to do phonetic
labeling will be less critical it there 1s information available to the
speech understanring system to correct those errors when other
constraints indicate that the intial label choice s wrong. We
presenled a simple way of providing this information by returning
the top few labels as they were rated over the center half of the
segment. The approach in Hearsay 1l (Lesser74) will be to extract
features from this list of labels, however, other uses could be made
as well. One should consider a labeling algorithm good if the correct
phonetic abel occurs in the top few, and especially if it s strongly
reinforced by phonetically similar labels.

Some labeling errors occur because the segmenter has
tailed to separate two diferent sesments. Usually some
characteristics of each can be seen in the labels, but the confusion
can be serious. Most errors, however, are direct results of the
inadequacy of the parameters to represent the acoustic "difference”
as 2 simple distance. Goldberg performed preliminary rating of some
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paramelric  representations and simple distance measures
(Goidberg73). The resulls are not unexpected -- spectral
envelopes did farrly well, for example, as did a generalized
quadratic classifier based on assumptions of normality. The
interesting point 1s that the best results fell into the range of
human performance shown by Shockey and Reddy.

Conclusions

We have shown that the same uniform algorithms may be
used to nproduce segmentation and labeling from quite different
parametric representations of the speech signals. The ability to
make comparisons 1s thus made avallable. The algorithms are simple
in form, and thus easily implemented in hardware. Their
performance, while not a:. the state of tiie art, is not far behind it.
We would recommend a “front end” of such methods for a
straightforward speech system. Such systems will be desired to test
new ideas for hiyher levels, to provide man-machine communication
in highly constrained tasks, and to test basic changes in system
structure.

Our plans include the application of these algorithms to
cther parametric representations than we have presented here. A
comparitive evaluation is being made of a variety of parametric
representations for their abilily to support segmentaticn and
labeling.
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A NEW 1IME-DOMAIN ANALYSIS OF FRICATIVES AND STOP CONSONANTS#
Janet Macliver Baker
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

bAbstract

Time-domain analysis has proven quite useful for
ravealing meaningful acoustic transients in human speech.
Although many of these transients are both quite brief in
duration and low in amplitude, they occur consistently in
connected speech. This paper outhnes ‘he kinds of analyses
performed and their results pertaining to the fricatives and
stop consonants.

o e s LB L EE L Lt

This paper describes the results of applying our new
time-domain techniques to the analysis of complex waveforms,
in this case human speech. Their chief advantage is precise
temporal resolution allowing exact timing of articulatory events
within a sample of speech; that is, no bandwidth limitation is
present. This temporal resolution is most significant for
charactericing fast transitional regions such as oc.ur at vowel-
conscnant and conssnant-vowel boundaries and within stop
consonants. In addition, certain characterictics of these
regions are either greatly enhanced or uniquely apparent in
the time-dormain. Such information is revealed in our visual
displays generated from the speech waveform up-crossings in
time. We call these [og |nverse period (LIP) plots.

The impetus for this work comes from two sources:
L)First are the studies by Licklider and his colleagues (5,6,)
who 25 years ago demonstrated the intelligibility of infinitely
clipped speech. This showed that sufficient acoustic speech
information is encoded in the zero-crossings of the waveform
itself. Given the redundancy of speech such information is
most probablv encoded by other aspects of the waveform. As
it happens though, zero-crossings or up-crossings are easy to
see and extract from the waveform. 2)The second motivation
for this work comes from neurophysiological research on the
auditory information processing of the ear itself. Basically
the ear processes an incoming signal in at least two widely
recognized manners. The first is analysis in the frequency~
domain and is analgous to a kind of filter bank where different
neurons along the basilar membrane respond to different
frequency ranges; that is, a given neuron fires it it detects a
signal of sufficient intensity within a particular frequency
range. Neurons also code information in the time-domain in a
manner known as phase-locking (4,8). Given a signal
waveform, a phase-locking neuron responds by firing once,
phase consistently, for each cycle or integer number of cycles
within the waveform. The technique we are using is directly
anatagous to this latter time-domain coding technique.

We generate our visual fisplays as follows: A zero-axis
Is drawn horizontally through the center of the ucoustic
waveform. We note the exact time when the waveform
crosses this axis in an upward direction. [n actuality, we
usually record only those up-crossings which exceed some
threshold amphtude, epsilon, set slightly above the horizontal
zero-axis. This threshold tends lo preclude low amplitude
background ..oise.  We measure each interval between
succesnive up-crossings and plot these as a function of time in
our uisplays., Therefore each up-crossing in the acoustic
waveform Is represented by a discrete dot in our displays. In

*This research was supported in part by the Advanced
Research Projects Agency of the Department of Defense under
contract no. F44620-73-C-0074 and monitored by the Air
Force Office of Scientific Research.
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fact, we acltually plot on a log scale, the inverse of the
interval between successive up-crossings, the period of the
cycle, along the vertical y-axis and time along the horizontal x-
axis. This yields a display which superficially resembles a kind
of spectrographic display. (!.B. For those reders familiar with
neurophysiological stuc-es of single unit responses, this display
is analagous to an "instantaneous frequency” plot and
functinnally analagous o a phase-locking phen..nenon) We
also dicplay a .ough intensity measure by means of a z-axis
modulation. That I1s, the size of a dot representing a given
cycle is proportionate to the log of the greatest amplitude
achieved during that cycle. This dot size intensity measure in
our up-crossing displays is analagous to the intensity measure
expressed in spectrograms. The following illustration shows
the relationship of the log inverse period plot to the waveform
from which it is generated. Note that individual cycle-
frequency values may be easily read from the y-axis.
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The idea of looking at zero-crossing measures per se s
not in itself conceptually new. However, in contrast to most
cther investigators (2,3,7,9) who have used zero-crossing
measures to analyze speech, we do not average our up-
crossings over a fixed intervat of time. Reasons for this will
be discussed shortly. First of all it is important (0 be aware
that the chief motivation for many zero-crossing studies has
been in searching for an inexpensive way to find frequency
domain acoustic features, such as formants. This method
avoids the computations required for Fourier transforms, for
example. In order to decrease the expense and variability in
examining individual cycles, it was easy to to compute an
average cycle length by simply counting the number of zero-
crossings occurring during a given time interval. This
procedure has two major consequences: 1) the perfect time
reso!ution inherent in the time-domain 1s lost when crossings
are averaged; that is, a bandwidth linutalion 1s introduced, 2)
the conventional acoustic features exlracted are usually less
precise and more variable than the same acoustic features
extracted drrectly with a frequency-domain analysis. Ou
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reason tor not averaging up-crossings 1s that in the speech
waveform iteed there are siamticant acoustic teatures which
la=t for only one or a few cycles in duration 1t cycles are
averaged, this information 1s irrevocably lost. Such transient
events frequently occur at vowel-consonant and consonant-
vowel boundaries as well as belween other acoustically
distinct regions, within stop consonants for example.

Data_and Methods

The total amount of data examined during the course of
this investigation consisted of several thousand utterances, in
both citation form as well as connected speech, spoken by
more than 20 male and female speakers, often In noisy
environments. The set of this data which has been studied
most thorouszhly consists of 684 utterances in citation form,
generously provided by June Shoup. Each ot the speakers (2
male and | female ) spoke 228 utterances chosen designed to
provide examples ot all the allophones of the fricatives and
stop consonants common in the English language, as described
in June Shoup’s Ph.D thesis, 1964 (10).

Each of these thrre sets of recordings was digitally
sampled at 20 k*vz. Then a number of tine-domain measures
were computed from these digital files. The accura- ‘ of such
measurements 15 of course himited by the 50 mi rosecond
resolubion of the sampling. However linear intespolation
between two successive samples was routinely pertormed to
more accurately pinpoint the time of waveform up-crossings.
The time for each wavelorm upcrossing was computed and
uced to calculate the inverse period for each cycle in the
waveform. Various amplitude measures were computed for
each cycle as well as several measures of the amount of
microstructure riding on each cycle. Each of these three types
of time-domain parameters have proved to be quite useful.
Then with all of these paramelers available, a cycle-by-cycle
hand analysis ot the waveforms tor all 684 utterances was
pertormed in order to precisely mark the time at which sharg
discontinuities in one or more of these parameters delineated
the acoustically distinct segments which occur internally in
fricative and stop consonants. This precise segmentation
required correlation of the time-domain parameter values with
the LIP plote anc expanded waveforms. Statistics on each of
these acoust. <egments were then computed with respect to
each of 18 linear and logarithmic time-domain paraneters. In
all there were 23 different stalistical tests per-ormed on the
individual acoustic segments for each fricative and stop
consonant. These tests included finding the number of cycles
in the sample, the mean, maximum and minimum values,
standard deviation, bimodal distribution etc. In addition,
where values ol individual cycles within a given segment were
more than 2 standard deviations from the mean for the whole
cet, these cvcles were elimnated and statistical measures, as
described above, were computed for the remaning set ot
cyclns. Also, tor each segment a least squares linear fit was
computed and its values at the beginning and end of the
<egment, rewpectively, were derived. These latter measures
are particularly uselul for indicating whether a given segment
15 relatively steady state and how great a discontinuity occurs
at the end of one segment compared with the beginning of the
next.

Ericatives

Generally fricatives are acoustically characterized as
sustained hizh frequency regions. In voiced fricatives, this
high frequency region 15 preceded by a low frequency region
which may persist throughout the high frequency region as
well. Time-domain analysis reveals that at the beginning of
the high frequency portion of the fricative, there is a very
charp discontinuity simultaneously, upward, for both cycle-
frequency and microstructure and often a decrease in
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amplitude where tle fricative is preceded by a vowel. These
are all large changes which are '-ually sustained for the
duration of the tricative. Usually at the end of the fricative,
sharp discontinuities are again observed. However a much
more transient kind ol acoustic feature often occurs at the
very beginning and again at the end of the fricative. At these
places is found one or a few cycles characterized by lower
cycle-frequencies than those of the other cycles in the
acoustic segment immediately preceding and the acoustic
segment iminediately following this transitional phenomena.
Amplitude of these cycles 15 variable and cycle microstructure
is usually low. These transition cycles are marked "t" in the
L1P plots. Regions of frication are marked "f" and for voiced
fricatives, the initial lower fr: quency region is marked "v"
Each line of waveform represents .1 sec of the speech sugnal
analyzed. Similarl/, the x-axis of the LIP plots 1s marked at
.1 sec intervals. The first example is an /s/ from the utterance
"there sir” (female speaker, HN).
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The second example shows the voiced fricative /v/ in
the utterarce "invent” (male speaker, EH).
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Stop Consonants

Acoustically, stop consonants usually have a pause
portion fcllowed by a higher frequency region which
represents the stop consonant release region, plus aspiration
if present. A voiced stop consonant has a iow frequency or
voicing region just preceding the pause purtion. Often these
lower fregencies are sustained throughout the release-
aspiration region as well. And it is not uncommon for the
pause cycles to be completely omitted in a voiced stop
consonant.

As the waveform transitions from prior context or the
initial voicing region in voiced stop consonants, the cycle-
frequency, amplitude and microstructure drop sharply.
Although this pause portion lasts only one or a few cycles, the
cycle-frequencies are quite low, often less than 100 Hz. The
dots representing these low cycles are visually quite obvious
in the LIP plots. Next, as the waveform transitions abruptly
into the release-aspiration region, both cycle-frequercy and
microstructi.'e measures increase sharply as does amplitude,
which nonetheless at its neak value generaly remans well
below the average level for unstressed vowels. Where
asniration is present, the transition from release to aspiration
is often smooth with cycle-frequencies and amplitude gradually
decreasing.

In the LIP rlots shown here, pause cycles are marked
"p", the release-aspiration region by "r*, and the initial voiced
region of voiced stop consonants by “v". The following
example is of the /t/ in the utterance “the till" (male speaker,

EH).
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Time-domain analysis also reveals the existence of
several more subtle acoustic phenomena which have previously
gone unrecognized. These phenomena are often both short in
duration and low in amplitude. They occur often at phone
boundaries are last for only one or a few cycles in the
acoustic waveform,

The first of t-ese is analagous to the transitional cycles
previously described for fricatives. At the end of the release-
aspiration region of the stop consonant, there is often, though
not always, one or a few cycles which have lower cycle-
freauencies than any of the other cvcles in either of the
acoustic segments immediately preceding and following this
acoustic event. These transitional cycles are marked as “t* in
the LIP plots which follow.

The second phenomenon is very common and shall be
referred to as a “stop preview". In the case of a stop
consonant which is precaded by a vowel (and sometimes by
other phone types as well), the very end of the vowel is
acoustically characterized by one or two cycles with much
higher cycle-frequencies than any of the other cycles which
comprise the vowel. These stop preview cycles are very low
in amplitude.Their duration is almost always less than 1 msec
and very commonly less than .5 msec. In the LIP plots, these
are marked as "sp”.

The third phenomenon concerns the one or two cycles
immediately preceding the stop preview. These one or two
cycles are usually of relatively large amplitude, but have a
lower cycle-frequency than those of the cycles preceding it.
Only at the very beginming of the vowel are there cycles with
cycle-frequencies as low or lower than the cycles immediately
preceding the stop preview. Although these stop preview
transitional cyc 2s are sometimes omitted when the stop
preview is present, they have nJ been observed when the
stop preview itself is absent. They are marked as "spt” in the
LiP plois.

lllustrative examples of all these phenomena are
provided in the utterances 1) "to do" and 2) “he grows”
(female speaker, HN).
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G:oer that neurons in the ear, as those in the other
cencory modalities, often respond most vigorously to sharp
diccontinuities of the incoming <ignal, it 15 intriguing to
speculate on the information provided by this common stop

W‘—"‘\/VJWWW preview phenomenon and when it may be most useful. lts
most obvious aspect 15 the cue 1t prowvides tha. a stop
' ”! ’ consonant follows. It 15 concevable that especially in
‘\M/\/\,!\WV\'J &!\} &hv ﬂvv n \ connected speech where stop consonants are often verv brief,
U such redundancy of their presence may be helptul fo stop

consonant detection.

Aliophones and_Acoustic Correlates

Using time--'smain analysis, it 1s easy to compute, for
example, characteristics of a /p/ release and compare thece to
those of a /t/ rriease. Certain general attributes become
readity apparent. For example, the cycle-frequencies of the
/p/ release are much more diffuse than those of the more
concentrated /k/ release. A /t/ release, in comparison to both
of these, usually has more energy concentrated at much higher
cycle-frequencies. Giver the same context, these attributes
and other time-domain parameters are quite useful for
consistently distinguishing between /p/, /t/, and /k/. However,
the acoustic correlates of the release of a particular stop
consonant in a given environment are often quite changed
when this same phone occurs in a different contexl.
Coarticulation effects thereby give rise to many allophones.

P I EFpepy

In the following examples are shown two allophones of
the phone /k/, one rounded and one not. The ulterances
containing these are, respeclively, 1)"pawn to queen four” and
2) "pawn 1o king four” (male speaker, JB). The release
portion of the the rounded /k/ of "queen” is characterized by
much lower cycle-frequencies than the release portion of the
/k/ in "king". Rounding of the lips causes the vocal tract to be
lengthened thereby lowering the cycle-frequencies emitted.
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These examples demonstrate the importance of
understanding coarticulation effects in the task of recognzing
individual phones from acoustic information.

N.B. Readers interested in the specfic acoustic
correlates to the allophones of fricatives and stop consonants
are referred to the author’s Ph.D. thesis, 1974 (1).

Acoustic-Phonological Phenomena

There are a variety of acoustic phonological
phenomena which are commonly observed with time-domain
ano!, si1s. Generally these phenomena are readly apparent in
botn the time-domain waveform and log inverse period plots.
However especially when such acoustic events are either very
fow in amplitude or very brief in duration, or both, their
existence 1s much more visually evident in in the log inverse
period plots.

One very common phenomenon is the case where a
fricative 1s characterized by a central region where the cycle-
frequencies are fowered in relalion to that phone’s
characteristic fricaticn frequencies. In the following example ,
the phone of interest is a rounded /f/ in the utterance “"no
foe” (female speaker, HN). The central mean frequency for the
initial fricated region is 1079 Hz, for the central region is
693 Hz, and for the final fricated region is 1148 Hz. In
addition, the first fricated region is much greater in amplitude
than the central and final regions which are about equal in
amplitude.
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Another kind of event commonly occurs during the
release portion of stop consonants. In the acoustic waveform,
this portion 1s characterized by amplhitude pulsing. The cycle-
frequency composition uf each of these pulses resembles that
of the normal release portion of the same stop consonant
when such amplitude pulsing is not present. Where aspiration
oceurs, it follows this amplitude pulsing, as it would a normal
release. The following examples of both waveforms and LIP
plo s show such amplitude pulsed /k/s in the utterances 1)
"sCak me" and 2) "soak 10" (male speaker, JA).
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The next phienomenon regards the issue of the . oushic
correlates of what are commonly reterred to as “unrelcased”
stop consonants. Time-domain analysis reveals that otten the
sl00 consonants which are phonetically transcribed by linguists
a. "unreleased” or onutted, are acoustically characterized by
the usual pause cycle(s), but with a very briet segment ot high
trequency energy which is analagous to a normal release
segment, and which 1s sometimes tollowed by the transition
cycle(s) leading into the nex! phone's acoustic events. This
very briet segment consists ot only a tew cycles, often just
one or two cycles where the the entire duration of this portion
may be so c<hort as to be less than | msec, and rarely more
than 6 msec long. The temporal sequencr of accustic events
characterizing these unreleased stop consonants 1s usually
identical with that tor released stop consonants except tor
durational  aspects. The few cycles with high cycle-
frequencies remaining In unreleased siop consonants are
unreliable indicators for specific 1denlification ot the stop
conconant. However, the information that a stop consonant lias
occurred and whether or not it was voiced does remain in most
cases. The following example shows such an unreleased stop
consonant, the /b/ 1n the utterance "tub took” (male speaker,
EH). In this particutar example, the segment with high cycle-
trequencies 1s retalively long in duration, 4.2 msec, and 1s
composed ot 7 cycles preceded by normal voicing and pause
cycles.
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Another example follows where the same kind of
acoustic event occurs during the course of 4 cycles lasting a
total of 2.3 msec. It occurs for the /k/ immediately preccding
the /t/ in the word “spectrogram” (temale speaker, SM). Such
short duration acoustic events are quite common In connected
speech,
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Frequently, as in both ot these instances, an
unreleased stop consonant s tollowed by another stop

consonant which is released. Acoustic observations of a very _[ z K - K z 5 3 :
briet stop consonant, otten indicate that another stop e T - - T
consonant will immediately follow.
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Another very common phonological phenomenon
relates to the insertion of an extra stop consonant. This occurs
when a syllable ends with a stop consonant and the next
syllabte begins. with a vowel (or somelimes a hiquid), even
when there is a word boundary .2parating the two syllables.
The speaker often articulate a .rmal stop consonant at the
end of the first syllable as e.oected, but then repeats this
same stop consonant when he tegins the next syllable. When
this happens it 1s not obvious to a human listener thet a
second stop consonant has been inserted Yy the speaker, In
the following example of the utterance "about lsrael” (male
speaker, JB), the /t/ in "aboul” is repeated, even after a long
interword pause ot .17 sec, at the beginning ot the imihal
vowel in the word “lsrael”. Acoustically both [t/s are
complete in ail respects.
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SUB-LEXICAL LEVELS IN THE HEARSAY [ SPEECH UNDERSTANDING SYSTEM

Linda Shockey and Lee D. Erman

Computer Science Departments
Carnegie-Mellon University
Pittsburgh, Pa. 15213

ABSTRACT

The HEARSAY II system provides a unitorm multi-level structure for representing the partial
analysis ot the utterance as it s being recognized a1d a convenient inodular structure for
Incorporzting new knowledge (ie., processing capabilities) into the system at any level. This
Paper describes the sub-lexical levels chosen tor the initial configuration (parametric, segmental,
phoretic, surface-phonemic, syllabic) ot the system and the kind ot processing that is
accomplished at those levels. The choice ot levels 1s related to traditional phonological theories.

INTRODUCTION

The HEARSAY [ (HSIl) speech understarding system (whose
system orgamization 1s described more ccmpletely in Lesser, et al,,
1974) provides a unified structure for describing an utterance as it
1s being analyzed. This structure may be thought ot as 3-
dimensional, with the dimensions being level ot representation
(e.g., acoustic, Phonetic, lexical, syntactic), time, and alternative
possibilities. This structure i1s held as a single data base which the
system maintains. HSII also provides a means tor introducing
knowledge sources (realized as computer programs) to work
towards recognition; the knowledge sources (KS's) cooperate by
examining and modifying this global data structure in a generalized
torva ot hypothesize-and-test.

Earlier speech recognition systems have suffered from
problems with internal levels of representation: in general, they
have no clear distinction among such concepts as "acoustic”,
“"phonetic”, "phonological”, "phonemic”, etc.t The major ditticulties
caused by this fuzziness ot representation are the inability to
decompose the system so as to allow usetul cerformance analysis
ot the various sources of knowledge and the inability to make use
of results obtained by linguisis and phonologists working along
traditional unes. The HSII system, on the other hand, does not
pre-specify the set ot levels used in the data structure nor the
set of knowledge sources; a particular system contiguratien is
generated by detining the levels to be used and creating the
knowledge sources to operate over them. Because the levels ot
representation are umiform and must be explicitly defined well
enough for the KS's to interact through them in an independent
manner, there is much more need and motivation to choose and
delineate them in a less ad hoe manner than in previous systems.

This paper 1) describes the choice of the sub-lexical levels
in the initial configuration (called HS$H-CO) which s being
implemented as the first test ot HSIl, 2) gives soma feel for the
kinds ot processing occurring at and between those levels, and 3)
relates those levels to traditional phonological theory.

s Two prime, but by no means exclusive, examples ot this problem
are the direct ancestors ot HEARSAY [I: the Vicens-Reddy
system (Vicens, 1959) and HEARSAY | (Reddy, et. al,, 1973a,
1973b).

THE LEVELS

The HSII-CO contiguration has five levels "below" the lexical

level:

(6. Lexical)
Syllab.c
Surface-Phonemic
Phoretic
Segmental
Parametr ¢

mNW s O

At each level, a (potentially complete) representation of the
utterance is tormed, composed of uniis appropriate to the level.

At the parametric level, the speech i1s represented by vectors
ot parameters (e.g., spectral parameters), typically sampled,
for example, every ten milliseconds.

At the segmental level, the utterance 1s described as being
composed of labeled acoustic segments. Each segment
represents an acoustically homogeneous section ot speech
(or a transiional segment) and is labeled in a way that
describes its aco. characteristics.

At tne phonetic level, the utterance is represented by a
phonetic description. This is a broad phonetic description
in the sense that some acoustically dissimilar elements are
grouped into perceptual units (eg. silence + burst +
aspiration may be represented by a single plosive
symbol); it is a fine phonetic description in the sense that it
s possible to specify articulatory  modifications
(retrotlexion, nasaiization) and degree ot stress.

The surface-phonemic level represents the utterance in units

which can be thought of as phoreme-sized, with the
addition of modifiers such as stress and boundary (word,
morpheme, syllable) markings.

The gyllabic leve!l represents an utterance as being composed
of syllables.

At each level, there is an identical connection structure which
allows the representation of sequences and (competing)
alternatives. In addition, structural connections are also made
across levels, reiating how the elements at one level serve to
support hypotheses at other levels.

s This research was supported in part by the Advanced Research Projects Agency of the
Department of Defense under contract no. F44620-73-C-0074 and monitored by the Air Force

Office of Scientific Research.
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PROCESSING

A knowledge suurce operates by reacting to a (sub-)
structur2 built in the global data base by another KS; it adds new
element« st some level or adds new connections between existing
units. This operation ot a knowledge source s triggered directly
by the change to the structure, not by the other KS. Thus, a KS1s
not aware of other knowledge sources, but rather specifies the
kinds of sub-structure and changes to which it desires to react.

At the sub-lexical levers, the general paradigm can be thought
ot as a rewriting scheme: a KS notices some structure and
rewrites it as a ditferent structure. In addition, it tinks the imtial
structure to its newly created one. Finally, if the new elements it
1s attempting to construct already exist (e:ther previously created
by itself or some other KS), then the structure 1s not duplicated;
rather, new connections are made {0 the pre-existing structure.

For simplicity of exposition, the following description of these
levels and processes assumes a bottom-up approach and linkages
only between adjacent ievels, but we will see below that these
limitations are not in the system.

From the parameiric level to the segmental level, the main
action 1s to group acoustically similar samples and then label the
segments. The segmentation scheme currently used in HS1I-CO
(Goldberg, et al, 1974) 1s parameter independent. At prescnt, the
parametric values for the segment target labels are determined
from a corpus of continuous speech by one male talher, whic has
been hand segmented and labeled with a farly narrow phonetic
transcription (using on the order of 75 labels). Each segment
receives up to five different labels, each with a confidence rating.

Aithough the segment labels used are often also phonetic
symbols, the lcvel s not intended to be phonetic -- the
segmentation and labeling reflect acoustic characteristics and do
not, for example, attempt t0 compensate for the context of the
segments or atlempt to combine acoustically dissimilar segments
into (phonetic) units. It i1s clearly necessary to improve on the
method of target selection to accomodate speaker variation.
Obviously, these targels can be established for any language,
although we have dealt exclusively with English.

The segment labels are actually defined through a set of
features: each segment i1s defined as having a ternary value (+, -,
or 0). Other than being ternary, as opposed to binary, these
features bear some resemblance to the the Jakobson-Fant-Halle
(195 ) feature sel. The use of features creates an indirectness of
refe;ence which 1.0lates the processing algorithms (knowledge
sources) from any particularly chosen set of segment labels; thus
different paramelric representations may use different sels of
labels (1e., they need only be defined in terms of the feature
vectors). This feature representation 1s also a means of creating
an algebra for manipulating the segment labels: for example, the
five alternative labels assigned to each segment may be combired
by combining their feature vector definitions (assuming a value of
-1 for -, +1 for +, and O for 0 and using the confidence measures
as weightings). The values of individual features of such a
combined vector may be used directly (e.g. to determine if a
segment 1s "voiced” or "nasalized”) or the entire vector may be
used to derive a new label, which will tend to be an “average”
over the input labels.

Going to the phonetic level, the main activity 1s hypothesizing
phunes from the labeled acoustic segments, using the adjacent
acoustic segments and previously recogrized phones as context.
Tris hypothesization may take several forms:

1) A single segment may be propagated as a single phone,
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with, perhaps, some relabeling In this case the phone 15
one-to-one with its acoustic segment. Moreover, patterned
errors caused by allophonic overiap are dealt with here.
For example, a rule at his level could say, “nasalized [OW]
might be velarized [AX]if i 1s found before [L}"

2) One phone may be synthesized from several similar
adjacent segmen.s. This form of combining can be thought
of as a way of correcting errors of the segmenter that
require contextual information.

3) A phone may be synthesized from several similar adjacent
segments. For example, a stop may be generated from a
silence followed by a segment of noise.

4) A phone may be generated from within one or across two
(or more) segments. For example, the sequence of [IYn T«
may become [IY N T] at the phonetic level, expressing the
idea that the phone N may be acoustically detectable only
as a nasalization of the preceeding vowel. However,
[I¥n N) would be rewritten as just [IY N], since the
nasalization 1s predictable from the environment.

.

%) Phones may generated 11<,ng combinations of the above.

The broad phonet'c transcription at the surface-phonemic
level 1s linked to the dictionary pronunciations (from the the
lexcical levet). This association process uses phonological rules
which rewrite symbols at the surface-phonemic level. For every
phcnetic element assumed o be present, a determination is made
as 1o what underiying (phonemic) element or sequence of elements
could have generated 1. For example, an utterance-fina! [N] could
have been derived from any of [N), [NX], [N T), or [ND} Each
possibility which 1s generaled is given a confidence rating
depending upon how strong the imtial identification is and upon
what support 1s derived from environmental evidence. Matches
are then made of temporal and segmental properties between
surface-phonemic and lexical items. Of course, at this point there
is strong interaction with the syntactic and semantic components
of the system working from the higher levels.

The syllabic level is one which receives only cursory
atter In in the present implementation of the system. We hope to
use 1t in the future as a repository of prosodic information. Also,
this looks like a very promising level for doing effective lexical
retrieval in terms of the size of the syllable unit in relation to the
size of words.

It should be understocd that although this structure has been
presented as a strict sequence of bottom-up processing through
adjacent levels, there are no such restrictions in the system; in
fact, much of the action comes from top-down processing and level
skipping. For example, if a word is hypothesized at the lexical
level which has elements different than those generated from
below, 1t 1s possible to probe down through the levels, hunting
harder for evidence that substantiates the word hypotresis. As an
example of level-skipping, given that an hypothesizer at the
syntactic or pragmatic level has suggested that a sentence may be
a 'yes-no question', an immediale skip may be made to the
parametric level to investigate pitch contours. These various kinds
of actions of top-down, bottom-up, and level-skipping can all be
happening simultaneously, as the knowledge sources are executed
asynchronously and in parallel.

* We use the notation [IYn] here to mean "nasalized [IY]".
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ILEVELS AND PHONOLOGICAL THEOQRY

In the past severa decades, two major phonological theories
have achieved prominence The phonemic theory (Gleason, 1966,
Hockelt, 1955, Harris, 1951) 1s based on the lenet ihat there are
discrete levels of analysis on the morphophonen '¢, phonemic,
allophonic, and pnhonetic levels and thal each of these levels can
be mapped onto its neighboring levels by the use ot a set of
distributional statements plus a statement for each segment
regarding its free variation properties. In this theory, the phone
's the surface-level entity: that which is actually articulated. The
other levels are perceptual or statistical constructs.

This theory has been attractive to builders of speech
recognition systems for two unrelated reasons: 1) its separate
levels are relatively easy to deal with in a computer system and 2)
several influential people in speech recognition have been trained
In and/or have contributed substantally to phonemic theory.

The second general class of theory, which has enjoyed
popularity more recently, is called generative phonology (Chomsky -
Halle, 1968, Postal, 1968). In general, it assumes only two fixed
levels: some sort of underlying representation in abstract tor
possible sequences of sounds in a given language (the nature of
which 1s much debated), and the phonetic output level (or
something very close 0 1t). Connecting these two levels 1s a set
of phonological rules, freaently thought to be ordered, which
change properties of segments and possibly add or delete
segments. These rues can be optional or obligatory. They can be
compared 1o a series of fillers: given a sequence of elements
destined 1o be articulaled (including all types of boundaries), the
entire 2tring 1s fed e the first filter. If it 1s able to modify an
element or group of elements in the input string, it does,
otherwise it lets the string pass unchanged. Of course, If the tilter
1s an optional one it may or may not be switched in. Then the
string 1s passed to the next filter. In general, alternations
between possibie surface pronunciations of a given base torm are
caused by an oplional rule having appled or not appled. The
major point here 1s that there are very many output levels tor
these filters, most of which can te inputs to others.

Al present, researchers trained in each of these theories are
occupied in aulomatic speech recognition; some are trained in both.
It seems that a cynthesis of Ihe theories, or at least an agreement
as to terminology, would be desirable, since workers in ASR quite
frequently use the idea of distinct levels of analysis (phonetic,
allophonic, phonemic, etc.) but are also interested in using
phonological rules in a generative rather than a descriptive sense.
Perhaps attempts at building systems, such as HEARSAY 11, which
explicitly span the full range of levels and make etforts at
conceptual cleanliness will prove an incentive and test-bed for
such a synthesis.

Due partially to thi, mixed theoretical tramework, we
experience difficulty 'n finding reasonable terminology for at least
one of our levels. The parametric and segmental levels seem to he
largely extra-theoretical, having more to do with theories of
speech perception than directly with phonological theory. The
term ‘phonetic level' seems well-motivated in that this level
attempts to postulate a phonetic transcription of the input or to
generate one from a hypothesized word. The syllabic level Is
probably more related to acoustic-phonetic studies, though some
phonologists use the syllable boundary in rule writing. But the
level we call 'surface-phonemic’ 15 not easily characterized in
terms of either of the theories mentioned above in most cases.
The hypotheses generated from below (typically the phonetic
level) reprecent a proposed phonemic transcription of Just those
elements wshich are identifiable from the speech input; the
hypotheses genereated from above (e.g., from lexical or syntactic

April, 1974 (CMU)

p.218 - WI3

knowledge) include most of the possible alternative sequences ot
allophonic tokens wnich can be related to the dictionary spe'ling,
but represented very broadly. This puts the surface-phonemic
level on a theoretically non-existent level somewhere between

allophonic and phonemic. In generative terms, the ‘scrtace-
phonemic’ level s more underlying than the output of the
Chomsky -Halle (1968) phonological component since i* is a very
broad transcription. It 1s a form intermediale between undertying
and surface forms; but it 1s a level which we tind useful despite its
lack of theoretical ancestry.
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INFERENCE AND USE OF SIMPLE FrEDICTIVE GRAMMARS

Elaine Rich
Carnegie -Mellon Universitys
Pittsburgh, Pa, 15213

One use ot syntactic knowledge in a speech
understanding system 15 to focus the system on the most
probable paths as it is attempting to understand an utterance.
This function s frequently performed by a parser similar or
'dentical 1o the one used to gererate a parse of the entire
utterance. However, it 1s possible to perform a large part of this
function witt out incurring the overhead of generating many
partial parses, most ot which will eventually te thrown away.
This 15 done by using a simple probabilistic grammar which, given
a string of already recogmized words, can predict the words
which can precede or follow the string, and associate with each
such word the probability that it will occur. The system can then
consider the most likely possibilities tirst. Jt they are rejected
by the lower level xnowledge sources, then the less likely
possibi'ities can be considered.

A knowledge source for the Hearsay I system
{Lesser,1974) has been constructed to do this. The data used by
this syntactic knowledge source consist primarily of a collection
of sentence fragments of varying lengths, each of which has
associated with 1t a list ot words which can precede 1t and a st
ot words which can follow it, along with the probability that each
of those words will occur in that environment. These tragments
may contain both specific words and grammatical classes. The
tragments are arranged by the word immediately adjacent to the
word to be hypothesized. The program uses a lexicon and a
grammar which provide it with the information it needs. The
lexicon contains an entry fcr each word in the vocabulary which
specifies the grammatical category to which the word belongs.
The grammar specifies, for each grammatical category, the
tragments which begin and end with that category and the words
which can adjoin them (and the probability associated with each
word). To predict words at a given point in the utterance, the
knowledge source looks up the word of the partially recognized
utlerance which 1s adjacent to the word to be predicted. Listed
for the part of speech to which it belongs will be strings of
arbitrary length starting with that word (for predicting to the
left) and ending with that word (for predicting to the right). The
program uses the longest such string which matches the
utterance fragment and predicts the alternatives listed as
occurring on the desired side of the fragment.

Since storing long strings to be used for prediction
Incurs a great deal of overhead, both in terms of space and in
terms ot the time required to check for a match between the
stored strings and a recognized piece of the utterance, it s
desirable to store long strings only if the use of additional words
causes a sigmficant increase in the accuracy of prediction.
Experiments will be conducted to discover when increasing the
length ot the strings ceases lo cause such an increase in
~erformance.

* This research was supported in part by the Advanced Research
Projects Agency cf the Department of Defense under contract
no. F44620-73-C-0074 and monitored by the Air Force Office
of Scientific Research.
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The criteria for assigning words to grammatical classes
In this system are well defined and are not necessarily the same
as in the traditional grammatical cystem with nouns and verbs.
The first criterion 1s to maximze the amount of information
known about the environment ot a word, given its grammatical
class. Thus, words which tend to occur in the same environment
should be in the same class. The second criterion is the
restriction of the number ot classes in order to cut down on the
number of senterce tragments to be stored as well as the
number of possible alternatives adjoining each of those strings.
A program 1s being developed which will read a corpus of
utterances and construct grammatical categories 'rom the words
of the corpus using the maximization of information criterion. As
with the question of how many words should be used to define
the environment, the question ot how many grammatical classes
to use will be answered empirically by observing the point at
which the addition of more ¢classes does not significantly improve
the predictive ability of the knowledge source. The principal
problem in getting the categorization program to do very we!l is
the need for a corpus large enough so *hat each word occurs
enough times to be able to know what ¢ . - ‘onments it can occur
in,

The program which constructs grammatical classes can
also construct, from the corpus, the lexicon and grammar needed
by the knowledge source. Thus it should eventually be possible
to have the machire both construct the grammar as well as use it.
One result of this 1s that it should be relatively easy to construct
a grammar based on a new corpus, thereby allowing the sytem to
recognize utterances pertaining to a new task.
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REAL-TIME LINCAR-PREDICTIVC CODING OF SPEECH

ON THE $P9-41 MICROPROGRAMMED TRIPLE-PROCESSOR SYSTEM

Michael J. Knudsen
Carnegie-Melion University
Pittsburgh, Pennsylvania

§ummar¥

Markel's autocorrelation method for linear predict.ve coding
of speech [l] has been impiemented on the SPS-4l, a
commercially availlabie system compused of three dissimiiar
microprocessors working in  parallel. Using user-written
microcode, one processor performs |/O and master control, the
second handles loop indexing and counting, and the third does the
actuval anthmetic on data. Such paralleism allows 2M /0
operations and 4M multiplications per second, but actually
realizing this potential requres fresh approaches to some old
algorithms, e.g., a new autocorrelation scheme with several
valuable properties. Inverting the autocorrelation matrix in 16
bits of fixed point also poses probiems. The present program
converts 256 words of 13-bit samples into 14 coefficients at 100
frames per second.

Review of Markel's Method

Motivation

Our major interest in Markel's method at C-MU 1s to find the
resonance spectrum of the vocal tract for each frame of speech,
where a frame 1s about 200-300 samples for a 10 kHz sample
rate. The next step after this (not covered here) is to identify
the formats or otherwise compare in¢ resonance curve with a
standard set of corresponding data for virious phonemes, in order
to identify the phoneme spoken.

A straghtforward high-resolution specirum of the frame (as
by an FFT) wil not do, as it will have not only the frequency
response of the wvocal tract, but will also superimpose the
spectrum of the excitation source. This will either be a dense
series of sharp peaks and valleys (rom the glottal pulses in voiced
speech, or a random |aggec curve from the white no'se In
unvoiced <peech. [n either case the many extraneous peaks and
vallcys mask out the desired formant peaks.

Qvervnew

Markel's method 1s a form of deconvolution, or separating the
eftect of the driving function (unwanted in our case) from that of
the criven system (the desired vocal tract response). Thus the
smooth resonance spectrum of the vocal tract can be obtained.
(The excitation signal can also be identified and used for pitch
extraction.)

Markel derives an inverse fiiter for each frame of speech
signal.  Such a filter attempts to destroy the signal input, 1e.,
reduce 1t to minimum energy and information content, either white
noise or zero. The frequency response of this filter must be the
inverse of the spectrum of the signal for which it was designed.
However, by judicious selection of its length, the filter can be
made capable of w ping out the gross frequency characteristics of
the <ignal (which cor 2spond to the formant resonances), but
unabir to follow the fine detail of the input spectrum (due to the
e«citation source). Thus the filter's frequency response 1s
inverse to the desired vocal tract response, but not to the
undesired exctitation. Since we generally work with logarithmic
(dB) frequency response scales, and iog(l/x) = -log(x), we need
only reverse the sign of the inverse filter response (as by viewing
it upside down) to plot the frequency response of the vocal tract.
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Nature nf Inverse Filter. The filter 15 finite-
impuise-respcase, all-zerces, and implemented n  direct
feed-forward form with unit delays. Such a filter of length M s
represented as:

M
Alz) = 1+2a[.]. 21(-i)
I

Markel's algorithm designs the filter for each frame by specifying
the M values a[l], a[2]}, .. ., a[M].

The frequency response of any filter 1s defined as the
spectrum of the output resuiting from a single unit impuise nput.
However, the filter defined above will respond to a unit impulse
simply by outputting a | and then reading ou’ its coafficients in
order, followed by zeroes forever. Therefore a discrete Fourier
transform (DFT) applied directly to the series

lla[l]' L O va[M]n0|0| R 0o lo' 0 o J
followed by magnitude, logarithm, and negation will compute the
vocal tract resonance spectrum,

The Algorithm

Autocorrelation. Given a frame of L digitized speech
samples, x[1] thru x[L], the first step in deriving an inverse filter
of M stages 1s to compule the autocorrelation vector R =
r[0], r[1], . . . r[M}, where

-n
r[n] = tx[n]tx[im]

=]

Markel claims [1] that much better results are obtained when
the input is multiplied by a non-rectangular window. Since our
own tests have not refuled this, and our autocorrelation method
permits windcwing at low overhead, we precede the
autocorrelation by a Hamming windowing:

x[1] := 0.5(1-COS(2sPI s i/L)) & x[1],  lsisL

Matrix Inversion. The filter coefficients a[i] are obtained by
solving the system of linear equations RtA=B, where

A transposed = [ a[l] a[2] ... a[M] ]

B transposed = [ r[1] r{2] ... r[M] ]
and .
1[0 *[1] *[2] . . . ¢(M-1]
r() [0 (1) ... f[M-2]
r[2] r[1] f[0] . . . r[M-3]
f[3] r[2] f[1] . . . r[m-4)

13
[]

IrM=-1 rM-2 rM-3 ... r[0] _]

Since the "autocorrelation matrix" R 1s symmetric, positive
definite, and of Toeplitz form, it can be solved in kxM12 steps
rather than the generally needed k#M13, k a constant. Our
method 1s described under [mplementation.
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Lpectrum, Ar v-pont  real DFT s  appled to
I, ali . a[M] foilowed by N-M-1 zeroes. Since the afi] are
ree, the magnitude o' the transform s symmetric about its center,
and only the firsi N/2 frequency bins need be computed.

Optimum Values. Markel's experiments show (1] thai for a
samoling rate of 10 KHz, best results are obtained with M=14 and
200<L<300. We use M=14 ang L=2E6. Our DFT has N=256 nput
points and thus outputs 128 bins for a frequency resolution of
about 40 Hz

"Real-time" Defined. In this paper we define “real time
capability” as maintaining a frame rale of 100/sec or better.

Structure of the SPS-4]

The SPS-41 s built by Signal Processing Systems, Inc, of
Walthan., Mass., costs about 830500, and occuples the same
amount of rack space as a PDP-11/20 minicomputer,

Design Phiosophy

The SPS-41 achieves high speed with modest hardware by
decomposing algorithms according to the sometimes-overlooked
fact that even a umerical analysis procedure spends only about
257 of its time comiruting on the data, with the rest divided about
equally between locn administration and mer vy stores and
fetches.  Any concurt *nt 1/0 operations will ner reduce the
fraction of time devoteo to actual data processing.

Assigning parts of a “omputational task to multiple processors
acrording to therr na‘ure (calculation, ioop indexing, or
stote/tetch), gives a form of parallelism quite distinct from either
the ILLIAC-IV approach or a pipelining of minis where each does
one phase of the Markel analysis. The first form 1s expensive and
Possibly not suitable for lInear prediction computation. The
second requires each mini to have powerfui arithmetic units
(hardware multiply), but since each machine implements all aspects
of one phase, its multiplier is 1dle 3/4 of the: time.,

Putting one aspect of all phases of the total process on each
processor, as in the SPS-41, permits restricting expensive
multipliers to the one section that needs them, and conversely
having no loop-testing facilities in the arithmelic section. This is
Just one example of the cost-saving specialization of processors
achievable by this form of algorithm decomposition,

Individual Processor Characteristics

General. Ali sections deal with 16-bit 2's complement data
and have a 200-nsec instruction cycle time,

Arithmetic Section (AS). The AS contains three data
memories, a read-only sine/cosine table, four multiphers, six
summers (adders), and a 16x64 microcode store. The ba.ic data
type is a complex word consisting of real and imaginary halves,
each 16 bits. However, the AS allows the two halves to be
treated separately as reals.

For a complex multiply, each of the four multiphers generates
one of the terms, and two summers buill into the multiply section
form the real and imaginary outputs. Either the high or low 16
bits of the 32-bit product may be taken, but not both. The
high/low choice must be made when the multiply is done, not
afterwards. Getting both halves of a resuit for double precision
requires repeating the multiply with the same inputs.  Products
may be scaled up or down a maximum of two bits; if the result
would overfiow, 1t saturates to +-2115; saturation cannot be
disabled. Other modes besides complex may be requested, e.g.,
conjugate, matrix, and twin rea.
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There are also two complex summers (four real adders) under
direct niucrocode control, pius one complex accumulator whose
outputs can be scaled like the produrte,

To reduce the tendency for Processing to be 1/0-bound, the
AS has data memories to enable Juffering, large-radix FFTs, etc.
AS data storage consists of two identical memories Hl and LO each
with 64 complex words, and the COEFF memory with 32, These
may all be read and written during one AS tnstruction. The only
ROM in the entire SPS-4] s TRIG, whose sines and cosines are
used for Hamming windows and Fourier transforms,

The AS logic i1s 4-bit byte serial and requires 5 clocks or one
usec to complete an instruction. Thus 4M real muitiphes and 6M
adds per second can be achieved.

The AS 1s a passive slave wilhout even a program counter.
The microinstructicn for each cycle 1s selected by the Index
Section, as are the scale factors and read/write memot y
addresses.

Index Seclion (IS). The IS s the controller for the AS.
Rarely does any data (meaning speech-related data) pass through
it.  The instruction set is oriented toward the byte slufts, bit
extraction, and rapid condition testing required for loop indexing
and control. It has a 32x]6 general memory plus 32 16-bit
registers including 7 accumulators, 4 control interfaces to the AS,
and 15 trap registers,

The IS 1s a true computer with a program counter. There are
only 48 words of 32-bit program store, but these are augmented
by the Trap system, the most interesting feature of the IS. No
direct test, branch, or halt instructions exist. Instead, 4 bits of
every program reference one of the 15 trap registers. (Trap 0
does not exist and signifies "no test.") Each user-loaded trap
register can hold 16 bits worth of tests and branch address for
the price of just 4 bits in the instruction.  Furthermore, any
instruction can test and branch or halt on its results for free.
Thus both length and breadth of program stcre are conserved.

Input-Output Processor {IOP). The IO interfaces the SPS-41
with the outside world and coordinates the 3 sections of the 4].

It is a universal device controller, where "device" includes the rest
of the SPS-4], anything attached directly to the 41's 1/0 bus, or
anything on the POP-11's Unibus. The 0P can halt the IS-AS
pair, and later continue them or re-initialize them and restart the
IS at any point in IS program store.

Up to 16 programs or "channels" can be timeshared by the
IOP on a fixed priority basis. At each 200-nsec clock, the cycle
goes to the highest-priority channel which is not waiting for an
untulfilled external status condition, e.g., core memory fetch
complete. (Note that PDP-1] memory is treated as a peripheral
davice, as suits i*s rofative slowness.) Since there are 16 copies
of the prog: s counter and the accumulator files, the equivalent
ot an interrupt is serviced within 200 nsec with zero overhead.

The 10P has a 265x23 program store and a 256x16 data
memory, plus external registers for peripherals (including PDP-1]
core) and four bidirectional data interfaces to the AS. FEach
instruction can operate on two separate operands and put the
result in a third location, making the IOP a 3-address machine.
Separate inslructions must be executed for tests and gotos or
suotoutine calls, unlike the IS,
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SPS-41 Implementation of Markel’s LPC

The System

The SPS-41 is interfaced as a peripheral to a FDP-11/20
(now 11/40) mini.  Other relevant peripherals aic 'wo magnetic
tape drives and a pair of author- constructed 12-bit digital to
analog converters (DACs). Currently the digitized speech data
must be imported from our PDP-10 wia magnetic tape. The
PDP-11 reads successive frames of raw data from this tape into
core; the SPS-4] performs the Markel analysis on each frame and
writes its resonance spectrum into another core buffer; and the
PDP~11 writes this onto tro sutput tapc mounted on the second
tape drive. Each input frame and its resonance spectrum are also
displayed on an oscilloscope connected to the DACs; this
immediate viewing 1s helpful in evaluating the quality of the
5PS-41's computation. The output tape 1s then transferred to
the PDP-10 for more extensive reviewing. While this tape to
tape operation 1s hardly "real time," the system is capable of 100
frames/sec and will run In real-time mode once the required
analog to digital converter and clock have been installed on the
PDP-11 Unibus. Quality and accuracy are shill the major goals, as
we are not yet fully satisfied.

Implementation of 3 Phases

The SPS-41 analyzes the signal in three phases: Hamming
window and autocorrelation; matrix solution for the filter
coefficients a1}y and the log magnitude DFT of the afi)}.  Since
the programs can not all fit in the 4] (especially the 1S), a small
swapper program residing in the I0P is called at the conclusion of
each pha.e to roll in the programs, constants, and data
imtiahzations for the next phase. Since the IOP can access any
memory in the 41, it can load these from special core images
called overlays. The swapper is loaded by the PDP-11 while the
41 15 in external (passive slave) mode.

Autocorrelation. The usual scheme [ar the short term
autocorrelation R of an input X of length L up to the Mth lag is:

real array r[0:M], x[1:L};  real sum; integer n, i;
for n:=0 step 1 until L do begin "lag_sums"
sum:=0.;
for 1:=1 step 1 until L-n do sum:=sum+x{iJex{i+n};
r{n):=sum;

end "lag_sums”;

(Note: "Real" and "Integer” are used here onty to distinguish data
and indices, respectively. "Real” values are of necessity
fixed-point numbers in the SPS-41.)

This procedure reads most of the x[i] 2(M+1) times. The
accessing pattern is M+1 sweeps thru the array X. in an ordinary
computer this 1s no proble-; but L=256 points  will not fit
conveniently in the 41°'s AS data memories, and larger numbers
will not fit at all. Thus t.e 41 would make almost 2¥(M+1)sL
reads from PDP-11 core with the above procedure, even though
there are only L unique values. Since core is to the 41 what
drums are to a conventional computer, the memory-boundedness
of the above scheme is intolerable.

Note that each x[i], M<i<L-M, is involved in 2M+1 products: M
with x's of lower index , one with itself, and M with x’s of higher
index. Using just enough AS meirory to hold an x[i] and the
other x's involved with i, we can compute all of «x{i)'s
contributions to the lag sums while x[i] is in the AS memory; thus
each x[i] need be fetched from core nly once. In our case,
M="4<<L =256, giving a definite reduction in AS memory needs.
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We use the 3 AS data merories as follows:

Lo COEFF HI
Bottom x[1] x[1] r[0]

x[1+1)] unused (1]

x[1+2] unused r(2]
Top xtH»M] u;msed r[.M]

To compute the contribution of the pivot value x[i] in COEFF to
the partial sums r[0] thru r[M], multiply the pivot by the x-value
in each row of the LO buffer, and 2dd this product to t::e r-sum in
the same row, i.e.,

r(kJ:=r[K] + x[iJex[i+k], OgksM

Now shift the the LO buffer down one, discarding the xi).
Copy the new buffer bottom x[1+1] into COEFF as the new pivot.
Fetch the next x-value x[1+M+1] and put 1t at the top of the
buffer. Then repeat the products and sums Repeat the above
until x{L] has been fetched into the buffer. Continue from there
by fetching zeroes in place of the non-existent x[>L)'s, until x[L]
has been the pivot. Then stop. (The procedure is initialized by
filling the buffer with x[1] thru x[M+1] with x[1] as the pivot for
the first set of products.)

Note that the products of x[i] with itself and x’s of higher
index are formed while x(i] 1s the pivot, and its products with
lower indices occurred previcusly as x{i] worked its way down
thru the buffer. Thus the auiv.creidtion can be computed using
just 2M+3 words of memory \including the (i)} and fetching each
input x only once.

Also note that M+] multiplications and additions take place
between x-fetches, so the data rate of the input storage medium
may be lower by a factor of at least 2M, compared to the
conventional method. This is imporiant in any system using
two-level, cache, or virtual storage. The single fetching of the
x[i] in ircreasing order not only assures optimum efficiency under
paging systems, but also suggests a real-time autocorrelation
scheme in which each data point’s contribution to the running lag
sums is computed as soon as it comes from the outside world. By
doing r[k]:=Car[k)+x[ilex[1+k), where C is almost 1.0, earlier
contributions to the running surs will exponentially decay and
real-time displays of long-term continuous signals could be
displayed.

Important here is the elimination of a core-to-core Hamming
windowing. Since each x{i] 1s fetched but once, it is multiplied by
the appropriate point on the Hamming weighting upon entry to the
AS, before being placed on top of the buffer. Windowing
contributes only 7% overhead to our SPS-41 autocorrelation. Qur
program does not shuffle the buffer for each new input, but
instead the 1S maintairs pointers to the buffer’s top and bottom,
which crawl around th: LO memory.

The 13-bit speech input values are regarded as ranging from
-1.0 to almost +1.0, thus are scaled x21-13. The products are
left at x21-11 scale, allowing for sums from =16.0 to almost +16.

Matrix Solution. Procedures for inverting this form of
Toeplitz matrix date back to Levinson {2] and Robinson (3], were
adapted by Markel [1], and later simplitied by Markel and Gray [4]
who eliminated 3 of the 7 steps as redundant. This redundancy
was also discovered by the author. All versions of the algorithm
are iterative, and after the nth iteration an nth-order inverse filter
has been designed.
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The algorithm implemented on the SPS-4] is:

real array R[0:M], comment input from autocorrelation;
A[0:M], comment output filter coetticients;
TA[1:M]; comment temporary sforage;

real alpha, beta, C; integer n,;

comment Initialize;

a[0}:=1.0; alpha:=R[0];

for i:=1 step 1 until M do begin
A[1):=0.; TA[):=0,;

end;

for n:=] step 1 untd M do begin "lterations”
beta:=0;
for 1:=0 sfep | until n-} do beta:sbeta+A(iJsR[n-1};
C := -beta/alpha;
for v:=1 step | untii ndo TA[):=A[i] + CsTA[n~);
for i:=] step 1 untl ndo A[i]:=TA[);
alpha := alpha + Csbeta;

end “lferafions”;

Al arithmetic 1s done bv the AS except the divide, which is
programmed in the I0P by the usual minicomputer techniques.
For M=14, the entire procedure takes less than one msec, of
which divisions account for half, Scaling is x21-13, allowing
values from -4.0 to almost +4,

Log-Mag DFT. The AS computes the complex Fourier
transtorms one at a time for each frequency from O to 5000 Hz in
steps of about 40 Hz. Using complex conjugate multiply, the AS
then tinds the squared magnifude and passes bzth halves of the
32-bit product to the I0P. The IOP locates the most significant
bt and encodes its position as the 5-bit exponent of the base-2
log, and the top 7 bits of the normalized value are used to index a
128-word lable of lors trom 1.0 to almost 2.0 (currently kept in
PDOP-11] core} to fill in the 8-bit mantissa. After rounding the
13-bit log fo 12 bits, the I0P writes it into the core output buffer
and 15 ady for the nex: value from the AS.

Since the AS computes a 256-point DFT on only 15 nonzero
points, and only the tirst halt ot the results are umique, and the
I0P logarithm procedure can handle only one value at a time, it is
just as practical tor the AS to compute the Fourier transform by
direct integration, rather than by any "fast” FFT techniques. This
phase takes about 2 msec. While a pruned FFT could do its part
faster, the log-mag part would be slowed down; thus we do not
intend to swifch to an FFT,

Results and Conclusions

Results. The system has been fully operational since
January 1974, However, it fends to give ob‘iously incorrect
resulls on strong voiced segments (vowels). Sibilants never fail.
Early problems with saturated producfs in computing Beta in
matrix inversion and the Fourier sums were solved by scaling
down an exfra bit. Disabling the AS saturation logic, it possible,
would also have solved these problems.

Conclusions.  The remaiming problems lie in the matrix
inversion. Markel and Gray [4] show that if C21.0 at any
iteration, the inversion has faled due to numerical errors.
PDP-10 simulations of the fixed-point arithmetic reveal several
excessive C-values during those speech frames for which faulty
SPS-41 output 1s observed. Excessive C's usually result from
relatively small values of Alpha and Beta; this suggests too much
loss of sigmificance in the x21-13 scaling. However, the current
scale's range of -4. to +4. s often needed, so the conclusion
scems fo be that more bits/word are needed. Markel and Gray
[4) state that 23 bits are required. Thus fufure efforts will
probably be devoted to converting some of the operations o
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double precision; the guest:ion 15, which operations car be safe y
letf in single?

Note that taking the high half of a product amounts lo
truncation, without roundoff. We have altered the matrix
inversion AS program to achieve rounding at no extra cost as
tollows: Appropriate constants are kept in the Imaginary halves
ot all data words, such that their contribution to a complex
conjugate mulliply is ane-half the value of the LSB of the high
producf. The contribution ot this rounding frick has not been
fully tested.

Could the autocorrelation phase be onartly responsible?
Simulations show no overflows or saturations. However, since
each r[i] 1s the sum of 256 truncated products, each r[1] is low by
a random variable distributed equally from O to 255, with a mean
error ot .28, It would probably help to add 128 to every final
sum. However, such errors should matter most for the small sums
computed on fricatives, which our system handles well, and mafter
least on loud vowels, when we faill We must still conclude that
matrix inversion is the weak link, although better accuracy in
distinguishing weak tricatives would no doubt result from double
precision autocorrelafion.

Ditterentiation of the input by the I0P will be tried soon; not
only will this lower the falure rate of matrix inversions (by
reducing the low-trequency energy which contributes to C21.0),
but it will also compensate the overall -6 dB/octave vocal tract
characferistic and show the 2nd and 3rd formants better [4].

Future Work. Top priority naturally goes to improving the
accuracy of the system, as by using double precision on the
mafrix and perhaps the autocorrelation. The latter can be
speeded up by a factor of at least 2 and probably &; presently
autocorrelation uses only one of the four AS multipliers.
Reprogramming will reduce the Phase 1 time from 5 to 1.5 msec.
True real-time operatfion will occur when the system becomes part
of the Hearsay I' implementation on C.mmp [5]. Even though
double precision may be required throughout, we still believe that
recl-time estimation of vocal-tract resonances is possible on the
SPS-4].
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A 16-BIT A-D-A CONVERSION SYSTEM FOR HIGH FIDELITY AUDIO RESEARCH

Stan Kriz

Computer Science Dept., Carnegie-Mellon University, Pittsburgh, Pa.

ABSTRACT

An A-D and D-A converter system with exceptionally wide dynamic range and low
distortion is discussed. The converters include a special track and hold circuit which
eliminates slewing distortion, active low pass tilters, and data buttering queuve.

Introduction

Traditional 12-bit analog-digital-analog conversion of high
quahty audio is becoming insulticient for audio analysis and
synthesis research. The need for greater dynamic range and low
distortion has led to the development of a 16-bit converter
system al Carnegie-Mellon University designed specifically for
audio service. The system has a total dynamic range of 90 dB.,
and less than 0.1 percent distortion and noise at large signal
amplitudes.  Conversion periods trom 20 microseconds to 150
microseconds are programmable and an appropriate low pass tiltor
is selected automatically. Direct memory access to a
minicomputer and a 64 word data queues provide simplified
programming.

Conversion Technique

Figures | and 2 show schematically the operation of the DAC
and ADC respectively. Rather than use tull 16-bit converiers,
the system first prescales the |6-bit digital (or analog) signal
to form a quasi-tloating-point number. Twelve bits beginning
with the tirst signiticant bit are taken as a floating=point
“traction” while a 3-bit “exponent” signities the position, or
magnitude, of the “fraction”.  Only the 12-bit “fraction” is
converted and atterward the analog (or digital) signal s
postscaled by the “exponent” to restore proper magnitude. This
technique extends the dynamic rangas of 12-bit conversion by 24 dB
without incurring the expunse and stability problems ot true
16-bit converters. As with conventiona; designs, track and hold
circuits are employed on the DAC to deglitch the converter, and
on the ADC to permit successive-approximation conversion.

Track and Hold

It +s not generally recognized that the DAC track and hold
can creale considerable distortion. The wusual ftransition
behavior of commercial track and hold circuils consists of a slew
period followed by quick and exact seitling to the new signal
level Because this {ransition slewing is not superposition

This research was supporled by the Advanced Research
Projects Agency ot the Otfice ot Defense under contract number
F-44620-73-C-0074 and is monitored by the Air Force Oftice of
Scientitic Research.
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linear, heterodyning ettects between the input signal and the
sampling clock may occur. For example, two microseconds is a
typical slawing time for a tull scale transition. If a maximum
amplitude sinusoidial input signal ot 7 KHz i1s sampled at a rate
ot 20 KHz, a | KHz heterodyne ot approximately =35 dB amplitude
will be produced. In this case the input signal is sampled three
times per cycle, and the resulting slewing assymetries repeat
every seven cycles.

Changing the track and hold transition behavior to a simple
exponential decay results in non-slewing transitions which
mainfain superposition linearity. Although long settling time
makes exponential decay useless tor most commercial applications,
audio signals incur only slight changes of amplitude and phase.
The track and hold designed for the I6-bit converters has an
exponential time conslanl of about 05 microsecond and the
resulting slight high frequency roll-oft can be compensated by an
external network,

As a turther modification for audio service, overall DC
feedback may be used around the track and hold. Since the audio
signal is sampled linearly and no heterodynes (including DC) are
tormaed, the output can be intograted and fed back to suppress any
DC errors. The complete D-A system diagram in tigure 3 shows
that the DC feedback loop includes all amplitiers to the output
connector where an ottset of less than one-half LSB can be easily
maintained. The complete A-D sy.lem pictured in figure 4 uses a
digital integrator and a small DAC to maintain zero digital
offset in the output data.

tow Pass Filters

Any audio conversion system clearly must have low pass
filters commensurate with system quality. The trequency-
dependent negative resistance (FDNR) active tilter contiguration
permits the design of component tolerant tilters with very low
distortion and wide dynamic range [1]. Because varying audio
requirements make the optimization of filter parameters
ditticult, the fillers were built as easily moditiable modules.
Any standard contiguration, ladder filter of order nine or less
may be implemented by changing a few resistors. Standard ninth
order elliptic-function values (fo | porcent tolerance) prosently
are being used. Passband equals 87 percent of the Nyquist
frequency with 0.5 dB measured ripple. The stoptand attenuation
al the Nyquist frequency and above measures grealer than 68 dB,
and signal to noise ratio (20 KHz bandwidth) exceeds 95 dB.

|EEE Symp. Speech Recognition




Soveral conversion rates are commonly required by the usor
community Tn tacilitate ease of operation, four low pass
tilters  with ditfering cut-ott trequencios are installed in both
the A-D and D-A A butter amplitier 1s necessary at the output
ot each tilter and includes a peaking network to compensate high
frequency roli-otf phenomena (including track and hold) which are
a tunction ot conversion rate [2). A peak of about 6 dB is
required, and the networks provide a few dB of additional
stopband attenuation.

Systom Features

The systems are designed for convenient user operation.
Figures 3 and 4 show that the A-D and D-A are independently
intertaced to a FDP-11 minicomputor. Data, usually divided into
large blocks, is transfered by direct memory access (DMA).
Procassor attention is not required except for interrupt service
at the completion of each block transfer. During these
interrupts, a 64 word first-in-tirst-out (FIFO) queue provides
several milliseconds ot buttering to permit continuous data flow
without critical interrupt timing.

A crystal clock divider provides four program selectable
conversion clocks between 20 microseccnds and 150 microseconds.
Programing the clock rate simultaneously connects the appropriate
low pass fiiter from the set of four filters. Timeout circuitry
clears the converters and FIFO's between user operations to

eliminate annoying clicks at the startup and conclusion of
conversion.

For monitoring purposes, the D-A has provision to echo the
A-D output independently of the processor. All of the D-A inputs
including clock and filter selection automatically switch o echo
mode for the duration of A-D operation.

Performancy Tests

The D-A system was tested by converfing perfect digital
sinewaves of varying amplitude and frequency. The fundamental
sinewave was removed from the analog output of the converter
system with a compensated twin-tee filter and the resulting
residue (ail noise, harmonic distortion, and heterodynes) is
ploited in figure 5. For lcw amplitude signals, the random noise
of the active filter and the DAC quantization noise are abouf 3
dB above fhe theoretical minimum quantization noise of the
conversion. As the peak sinewave amplitude is increased above
twelve bifs, conversion noise rises because of the floating-point
operation of the converter which truncates low order bits. In
this region total rosiduo is abouf 0.03 percent, and harmonic
distortion bocomes noticable only near maximum amplitudes. The
increase in residue at 0 dB, 12 KHz input is a heterodyne caused
by slight distortion in the active low pass filter.
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The A-D system test was somewhat cumbersome but provides
preliminary intormation until & through test can be implimented
(3] Similar to the D-A test, a low distortion sinewave (noise
and distortion more than 80 dB down) was converted and the
fundamental subtracted (digitally) from the output. The residue
was then digitally amplified and reconverted to analog for
examination. Figure 6 shows a noise shelf of about 90 dB : about
8 dB above the theoretical minimum. This higher leval is
parfially attributable to track and hold sampling of high
frequency noise from the fiiters. In general, quantizing noise
at all input amplitudes is higher because of seusitivity of the
analog circuits driving the 12-bit ADC. Both of these factors
hopetully can be reduced in the near future.

Conclusion

A 16-bit A-D-A conversion system has been designed
specifically for high filelity audio service. The system
ulilizes floating=point approximation at conversion, a linear
track and hold circuit, and overall DC feedback. Major user
features include easily modified low pass fil'ers, a DMA
minicomputer interface, and a 64 word data cuffer. System
performarce apcroaches theoretical limits.
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Figure 5 Performance of the D-A system.
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